




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆定义及其标准方程(金沙县逸夫中学 陈相飞) 一、教学内容分析本课选自普通高学课程标准实验教科书(选修2-1)数学(北师大版),第三章1.1节.本节教材主要内容是使学生了解椭圆的实际背景,感受椭圆刻画现实世界和在实际问题中的作用;使学生经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义、标准方程的推导及步骤、标准方程中a、b、c的代数意义、标准方程及其轨迹,本节对椭圆定义与轨迹的研究,和圆的定义与轨迹相呼应,学生学习了圆的定义之后,已初步具备了探讨椭圆定义的本质这个问题的能力,通过探究,使学生从感性认识逐步上升到理性认识,形成对椭圆这一概念本质的理解,从而进一步让学生体验 “用方程研究曲线”这一基本思想,体现了数学的和谐之美,符合认知的渐进原则。二、学生学习情况分析我校是省级重点普通高级中学,有优越的多媒体设备,学生的数学基础较好,有强烈的求知欲,具备一定的分析、观察等能力。在此之前,学生已经熟练掌握圆的定义及轨迹,二次函数的图象等内容,迫切想了解更多曲线本质特征。但是在动手操作与合作学习等方面,发展不均衡,有待加强。三、设计思想为了培养不仅能“学会”知识,而且能“会学”知识的人才以及根据我校提出的“创设情景、激发情感、主动发现、主动发展”的教学模式,在课堂设计上,教师应学会如何创设情景,激发学生学习的兴趣;围绕教材的重难点,比如本节的“椭圆概念的形成”和“椭圆的标准方程及其推导”,教师应学会如何设计不同的活动环节,设置由浅入深、环环相扣的问题,通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。四、教学目标1使学生了解椭圆的实际背景,感受椭圆刻画现实世界和在实际问题中的作用;2、掌握椭圆的定义、标准方程的推导及步骤、标准方程中a、b、c的代数意义、标准方程及其轨迹,3、掌握直接法求曲线方程,培养学生数形结合数学思想,提高分析问题的能力。4营造亲切、和谐的氛围,以“趣”激学。引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美。培养合作学习的意识,体会成功带来的喜悦。发展数学应用意识,认识数学的应用价值。五、教学重点和难点教学重点: 椭圆的定义及其标准方程的推导。通过学生自主建立直角坐标系和对方程的讨论选择突出重点.教学难点:椭圆概念的形成。通过椭圆的画法设计,标准方程与圆的比较突破难点。六、教学过程设计 中国第一颗人造地球卫星“东方红一号” 太阳系行星运行轨道 生活中的玻璃餐桌 椭圆是由圆压扁得到的吗?一 设置情景,导入新课(借助多媒体)先给出一张“东方红一号”的图片师:中国自主研究的人造地球卫星是我们中国人的骄傲,同学们你们通过努力学习,一定可以为中国创造更多的骄傲,对吗? 生:对!生:当然可以!生:为中华民族崛起而努力!师:对!大家都很有信心,我相信你们有一天可以做到的,今天我们就着手研究卫星运行的轨道-椭圆.( 给出另外三张图片,让学生简要讨论图片内容.)【学情预设】学生被教师设置的情景所吸引,学习的热情高涨。【设计意图】一个引人入胜的开头会拓宽学生思路,尊重学生的生命活动,激发兴趣,陶冶情操,大大提高教学效率。二引导探究,获得新知师:在高一我们已经学过圆的定义和方程及圆的轨迹,那么,我们看到第四张图片,椭圆是不是由圆压扁得到的呢?它和圆有没有关系吗?生:不是!生:是!师:它和圆有没有关系吗?生:有关系.生:没有关系.yoFFMx师:为了解决这两个问题,先给出一种画椭圆的方法: 取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如下图),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆我们来看一看椭圆和圆的画法。(找2个学生上讲台按这个方法画出一个椭圆,之后用几何画板演示画圆的过程和画椭圆的过程) 【学情预设】学生认真观察图象的变化.【设计意图】不仅回顾了圆的相关内容,体验了椭圆的画法,而且为归纳出 椭圆的定义打下基础.师:这椭圆是怎么画出来的啊!(课堂顿时一片寂静)师:从画法中找出要满足什么样的条件才可以画出一个椭圆呢?(可以提问,也可以集体回答.)生:F1、F2点固定,是定点。师:对!还有什么条件吗?生:MF1+MF2就是细绳的长度。师:太对了,而细绳的长度是固定的,也就是说MF1+MF2 是个定长。同学们归纳的很正确,那么这里面有没有隐含着什么呢?生:师:我们来看, F1、F2、M三个点是构成一个三角形的 (有学生说出应满足的结论)生:MF1+MF2大于F1F2的长度.师:回答得很好!你们根据这些应满足的条件归纳出椭圆的定义来.( 引导学生概括椭圆的定义)生:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆师:对,椭圆的定义就是: 平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.下面我们来看看, MF1+MF2小于等于F1F2的长度时,M点的轨迹是什么情况呢?(学生思考)生:若常数=|F1F2|,则是线段F1F2;生:应该有两种情况: 若常数=|F1F2|,则是线段F1F2;若常数|F1F2|,则轨迹不存在;师:也就是说: 若常数=|F1F2|,则是线段F1F2;若常数|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”(强调MF1+MF2是定长但是大于|F1F2|)【学情预设】学生间合作交流,完成对椭圆定义的归纳。【设计意图】着重培养学生分析、归纳等能力。三深入探索,推导方程师:接下来你们试试推导椭圆的方程?(简单回顾求圆方程的方法和步骤:(1) 建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件 P(M) ;(3)用坐标表示条件P(M),列出方程 ; (4)化方程为最简形式;师:第一步,该如何建立坐标系呢?(学生会说出不同的方案,选取下列方案)生:以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系。(老师在黑板上画出适当的图(如下图) yoFFMxoFyx2FM (方案一) (方案二)师:这样建系很合理。建立坐标系后F1、F2的坐标分别是, 原则:尽可能使方程的形式简单、运算简单;(一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.)生:|MF1|+|MF2|=a师:为了后面化简方便,我们这里把定长定为2a.下面列出方程.生:,得方程:师:最后化简方程, 化方程为最简形式;(一段时间后,投影仪展示化简的过程: 原方程要移项平方、整理得 上式两边平方、整理得,.因为,所以可化为: 为使方程对称和谐而引入b,同时b还有几何意义,下节课还要讲。因为,所以令,其中b0,代入上式,得 ()这说明椭圆上点的坐标满足以上方程,关于证明所得的方程是椭圆方程,可参考课本62页的证明,根据情况也可从略)师:因此,我们将方程()叫作椭圆的标准方程,焦点坐标,其中.师:那么象方案二建立坐标系的话,椭圆的方程该怎样写呢?生:只需要将互换就可以了,应写成同样有.师:很好,今天我们学习了椭圆的定义以及如何推导出椭圆的标准方程.四.指导应用,鼓励创新师:我们假设地球是个球体,半径是6371千米,而且知道“东方红一号”的近地点:430千米; 远地点:2075千米,你们能建个坐标系,求出“东方红一号”运行轨道的标准方程吗?这个问题留给同学们课后完成.【学情预设】当遇到实际应用题,学生可能会感到困惑,但在教师的引导下,利用掌握的相关知识解决了实际生活问题。【设计意图】设计一道卫星运行轨道轨迹的方程的例题,不仅与开头遥相呼应,而且可以巩固新知识,加深学生的数学应用意识,让学生感受数学的价值,体会数学来自生活,又应用于生活,服务于生活。师:现在我们来做2个练习(投影仪展示例题)例1:已知B,C是2个定点, ,且的周长等于22,求顶点A满足的一个轨迹方程.例2:下列各组两个椭圆中,其焦点相同的是( )A. 与 B. 与C. 与 D. 与五小结概括,深化认识师:今天我们学习了什么内容?生: 利用几何知识画出了椭圆。生: 知道了椭圆的定义和标准方程,知道了标准方程中的代数关系.定义椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹标准方程()图形12yoFFMx1oFyx2FM焦点坐标c之间的关系师:这是知识方面的。我们还学到了哪些数学思想方法?生:观察归纳;生:类比的方法;生:数形结合思想;师:很好!今天我们学习的内容虽然不多,但是从知识、能力、思想与应用等方面都理解和体验了数学的奥秘!也可以看出,如果我们做生活的有心人,就会发现数学与生活实际是密切相连的。【学情预设】学生总结出在知识、数学思想等方面的收获。【设计意图】摆脱传统教学中教师小结的做法,让学生自己总结,加深对本节课内容的认识。六布置作业1.课本68页,习题3-1:第1、4题2.如何用几何图形解释,C在椭圆中分别表示哪些线段的长?板书设计椭圆及其标准方程1.椭圆的定义2.椭圆的标准方程3.标准方程的应用4.小结标准方程推导过程例题七、教学反思在教学设计中,应注意充分调动学生已有的知识,引导学生把新旧知识有机融合,掌握知识的系统结构。为了突破本节课的难点椭圆概念的形成,在教学设计中,注重设计三个活动:第一个活动让学生感受亲手画出椭圆的过程,并培养学习的信心;第二个活动中将圆与椭圆两种曲线进行比较,为学生的自主探究活动提供了实物载体,并能体会成功带来的喜悦;第三个活动中,计算机为教师进行教学演示和学生的观察提供了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产培训试题模板及答案解析
- 护理知识竞赛题库填空题及答案解析
- 质量安全人培训试题及答案解析
- IT集成工程师工作总结
- 掌声教学设计美术课件
- 手术室护理案例大赛
- 运城安全生产培训课件
- 运动前后课件
- 牙轮钻机培训课件
- 幼儿园班级工作总结
- 融资方案报告范文模板
- 四位数乘四位数乘法题500道
- 地物点位误差检验表
- 化疗前的准备和评估
- GB/T 7276-1987合页通用技术条件
- GB/T 40449-2021犬、猫绝育手术操作技术规范
- 安全工作目标及计划
- 新浙美版五年级上册美术教学计划
- 《数码摄影入门与进阶》课件:第4章 摄影构图
- 聚氨酯防水涂料检测作业指导书
- 《幼儿园中班第一学期家长会》 PPT课件
评论
0/150
提交评论