




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湘教版八年级数学下(新)1.3直角三角形全等的判定共2课时教案 课题直角三角形全等判定共 2 课时第 1 课时课型新课教学目标1知识与技能:使学生理解判定两个直角三角形全等可用已经学过的全等三角形判定方法来判定2. 过程与方法:使学生掌握“斜边、直角边”公理,并能熟练地利用这个公理和一般三角形全等的判定方法来判定两个直角三角形全等指导学生自己动手,发现问题,探索解决问题(发现探索法)3.情感态度与价值观:由于直角三角形是特殊的三角形,因而它还具备一般三角形所没有的特殊性质因为这是第一次涉及特殊三角形的特殊性,所以教学时要注意渗透由一般到特殊的数学思想,从而体现由一般到特殊处理问题的思想方法重点难点1、重点:“斜边、直角边”公理的掌握2、难点:“斜边、直角边”公理的灵活运用教学策略观察、比较、合作、交流、探索教 学 活 动课前、课中反思(一)复习提问1三角形全等的判定方法有哪几种?2三角形按角的分类(二)引入新课前面我们学习了判定两个三角形全等的四种方法SAS、ASA、AAS、SSS我们也知道“有两边和其中一边的对角对应相等的两个三角形不一定全等”,这些结论适用于一般三角形我们在三角形分类时,还学过了一些特殊三角形(如直角三角形)特殊三角形全等的判定是否会有一般三角形不适用的特殊方法呢?我们知道,斜边和一对锐角对应相等的两个直角三角形,可以根据“ASA”或“AAS”判定它们全等,两对直角边对应相等的两个直角三角形,可以根据“SAS”判定它们全等.提问:如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否能全等呢?1可作为预习内容如图,在ABC与ABC中,若AB=AB,AC=AC,C=C=Rt,这时RtABC与RtABC是否全等? 研究这个问题,我们先做一个实验:把RtABC与RtABC拼合在一起(教具演示)如图3-44,因为ACB=ACB=Rt,所以B、C(C)、B三点在一条直线上,因此,ABB是一个等腰三角形,于是利用“SSS”可证三角形全等,从而得到B=B根据“AAS”公理可知,RtABCRtABC3两位同学比较一下,看看两人剪下的Rt是否可以完全重合,从而引出直角三角形全等判定公理“HL”公理(三)讲解新课斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)这是直角三角形全等的一个特殊的判定公理,其他判定公理同于任意三角形全等的判定公理练习1、具有下列条件的RtABC与RtABC(其中C=C=Rt)是否全等?如果全等在()里填写理由,如果不全等在()里打“”(1)AC=AC,A=A ( )(2)AC=AC, BC=BC ( )(3)A=A,B=B ( )(4) AB=AB,B=B ( )(5) AC=AC, AB=AB ( )2、如图,已知ACB=BDA=Rt,若要使ACB BDA,还需要什么条件?把它们分别写出来(有几种不同的方法就写几种)理由:( )( )( )( )例题讲解例题1 如图1-23 ,BD,CE分别是ABC的高,且BE=CD. 求证:RtBECRtCDB练习3、已知:如图3-47,在ABC和ABC中,CD、CD分别是高,并且AC=AC,CD=CD,ACB=ACB求证:ABCABC分析:要证明ABCABC,还缺条件,或证出A=A,或B=B,或再证明边BC=BC,观察图形,再看已知中还有哪些条件可以利用,容易发现高CD和CD可以利用,利用它可以证明ACDACD或BCDBCD从而得到A=A或B=B,BC=BC找出书写顺序证明:(略)例题2 已知一直角边和斜边,求作直角三角形。已知:求作:作法:(1) (2) (3) 则ABC为所求作的直角三角形。小结:由于直角三角形是特殊三角形,因而不仅可以应用判定一般三角形全等的四种方法,还可以应用“斜边、直角边”公理判定两个直角三角形全等“HL”公理只能用于判定直角三角形全等,不能用于判定一般三角形全等,所以判定两个直角三角形的方法有五种:“SAS、ASA、AAS、SSS、LH”(四)练习 练习1、2(五)作业(六)板书设计(七)课后反思使学生掌握“斜边、直角边”公理,并能熟练地利用这个公理和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眩晕的诱发因素及护理
- 幼儿园工作个人工作汇报
- 走进冰岛课件
- 2023年度计算机四级通关考试题库及答案详解【真题汇编】
- 2025年咨询工程师模拟试题含完整答案详解【考点梳理】
- 2025导游资格考试模考模拟试题及参考答案详解(巩固)
- 自行车简笔画课件
- 2025年高校教师资格证之《高等教育法规》练习题包含答案详解(基础题)
- 2024-2025学年反射疗法师大赛理论试卷附参考答案详解(能力提升)
- 饲料安全生产培训纪要课件
- 公安援疆工作总结
- 第8课《网络新世界》第一课时-统编版《道德与法治》四年级上册教学课件
- 2025年审计部招聘考试模拟题及答案详解
- 2025年招聘市场年中洞察报告-瀚纳仕
- Bowtie安全分析培训课件
- 退役军人优抚政策课件
- 财务遴选笔试题及答案
- (2025秋新版)人教版二年级数学上册全册教案(教学设计)
- 六年级上册音乐课教案
- 肿瘤病人疼痛评估与干预策略
- 物业管理人员考核制度及标准
评论
0/150
提交评论