




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角公式总表L弧长=R= S扇=LR=R2=正弦定理:= 2R(R为三角形外接圆半径)余弦定理:a=b+c-2bc b=a+c-2ac c=a+b-2ab S=a=ab=bc=ac=2R=pr=(其中, r为三角形内切圆半径) 同角关系:商的关系:= 倒数关系:平方关系: (其中辅助角与点(a,b)在同一象限,且)函数y=k的图象及性质:()振幅A,周期T=, 频率f=, 相位,初相五点作图法:令依次为 求出x与y, 依点作图诱导公试sincostgctg-+-+-+-+2-+-2k+三角函数值等于的同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限sincontgctg+-+-+-三角函数值等于的异名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限和差角公式 其中当A+B+C=时,有:i). ii).二倍角公式:(含万能公式) 三倍角公式:半角公式:(符号的选择由所在的象限确定) 积化和差公式: 和差化积公式: 反三角函数:名称函数式定义域值域性质反正弦函数增 奇反余弦函数减反正切函数R 增 奇反余切函数R 减 最简单的三角方程方程方程的解集三角函数所有性质及关于三角函数公式2009-03-05 18:09:30|分类: 数学 |标签: |字号大中小订阅 同角三角函数间的基本关系式: 平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() 商的关系: tan=sin/cos cot=cos/sin 倒数关系: tancot=1 sincsc=1 cossec=1 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2-a)=cos(a) cos(2-a)=sin(a) sin(2+a)=cos(a) cos(2+a)=-sin(a) sin(-a)=sin(a) cos(-a)=-cos(a) sin(+a)=-sin(a) cos(+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos()sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-12cos(a+b)-cos(a-b) cos(a)cos(b)=12cos(a+b)+cos(a-b) sin(a)cos(b)=12sin(a+b)+sin(a-b) 5.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的 ) asin(a)+bcos(a)=a2+b2sin(a+c) 其中 tan=ba asin(a)+bcos(a)=a2+b2cos(a-c) 其中 tan=ab 1+sin(a)=(sin(a2)+cos(a2)2 1- sin(a)=(sin(a2)-cos(a2)2一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)sin (kZ)cos(2k)cos (kZ)tan(2k)tan (kZ)cot(2k)cot (kZ)公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式三:任意角与 -的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)sincos(2)costan(2)tancot(2)cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于/2*k (kZ)的三角函数值,当k是偶数时,得到的同名函数值,即函数名不改变;当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。(符号看象限)例如:sin(2)sin(4/2),k4为偶数,所以取sin。当是锐角时,2(270,360),sin(2)0,符号为“”。所以sin(2)sin上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360-所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“”;第二象限内只有正弦是“”,其余全部是“”;第三象限内切函数是“”,弦函数是“”;第四象限内只有余弦是“”,其余全部是“”上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型 第一象限 第二象限 第三象限 第四象限正弦 .余弦 .正切 .余切 .同角三角函数基本关系同角三角函数的基本关系式倒数关系:tan cot1sin csc1cos sec1商的关系:sin/costansec/csccos/sincotcsc/sec平方关系:sin2()cos2()11tan2()sec2()1cot2()csc2()同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。两角和差公式两角和与差的三角函数公式sin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsintan()(tan+tan)(1-tantan)tan()(tantan)(1tantan)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin22sincoscos2cos2()sin2()2cos2()112sin2()tan22tan/1tan2()半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin2(/2)(1cos)2cos2(/2)(1cos)2tan2(/2)(1cos)(1cos)另也有tan(/2)=(1cos)/sin=sin/(1+cos)万能公式万能公式sin=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2(/2)万能公式推导附推导:sin2=2sincos=2sincos/(cos2()+sin2().*,(因为cos2()+sin2()=1)再把*分式上下同除cos2(),可得sin22tan/(1tan2()然后用/2代替即可。同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式三倍角的正弦、余弦和正切公式sin33sin4sin3()cos34cos3()3costan33tantan3()13tan2()三倍角公式推导附推导:tan3sin3/cos3(sin2coscos2sin)/(cos2cos-sin2sin)(2sincos2()cos2()sinsin3()/(cos3()cossin2()2sin2()cos)上下同除以cos3(),得:tan3(3tantan3()/(1-3tan2()sin3sin(2)sin2coscos2sin2sincos2()(12sin2()sin2sin2sin3()sin2sin3()3sin4sin3()cos3cos(2)cos2cossin2sin(2cos2()1)cos2cossin2()2cos3()cos(2cos2cos3()4cos3()3cos即sin33sin4sin3()cos34cos3()3cos三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角 减 3元(减完之后还有“余”)注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。另外的记忆方法:正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是3倍sin, 无指的是减号, 四指的是4倍, 立指的是sin立方余弦三倍角: 司令无山 与上同理和差化积公式三角函数的和差化积公式sinsin2sin()/2cos()/2sinsin2cos()/2sin()/2coscos2cos()/2cos()/2coscos2sin()/2sin()/2积化和差公式三角函数的积化和差公式sin cos0.5sin()sin()cos sin0.5sin()sin()cos cos0.5cos()cos()sin sin0.5cos()cos()和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b)/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b)/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b)/2cosa*sinb=(sin(a+b)-sin(a-b)/2cosa*cosb=(cos(a+b)+cos(a-b)/2sina*sinb=-(co
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行绥化市望奎县2025秋招信息科技岗笔试题及答案
- 农发行绵阳市涪城区2025秋招无领导模拟题角色攻略
- 国家能源防城港市上思县2025秋招心理测评常考题型与答题技巧
- 国家能源沧州市沧县2025秋招笔试资料分析题专练及答案
- 国家能源滨州市沾化区2025秋招笔试模拟题及答案
- 2025年4月广东深圳市福田区区属公办高中面向全国遴选校长1人考前自测高频考点模拟试题及一套完整答案详解
- 医生感人事迹演讲稿
- 同桌的道歉信
- 农药化肥买卖合同5篇
- 2025年鹤壁黎阳中学招聘教师若干名模拟试卷及答案详解(历年真题)
- 胚胎移植术后的健康教育
- 《怎样当好班主任》课件
- 大学美育(第二版) 课件 第六单元:乐舞的交融:舞蹈艺术
- 德化县高内坑生活垃圾填埋场陈腐垃圾开挖处置项目环评报告书
- 高考语文图文转换练习题答案+专项练习含答案
- PBT老托福语法全解析【TOEFL语法大全】
- 初中历史-《美国内战》教学课件设计
- 评论碎片化阅读(编辑综合)
- GB/T 24983-2010船用环保阻燃地毯
- GB/T 18029.14-2012轮椅车第14部分:电动轮椅车和电动代步车动力和控制系统要求和测试方法
- 认识国旗(课堂PPT)
评论
0/150
提交评论