《多边形内角和》教学设计.doc_第1页
《多边形内角和》教学设计.doc_第2页
《多边形内角和》教学设计.doc_第3页
《多边形内角和》教学设计.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多边形内角和教学设计根据以上分析,本节课的教学设计围绕以下五个环节:1、创设情境,引入新课;2、合作交流,探索新知;3、应用新知,尝试练习;4、归纳总结,形成体系;5、布置作业,巩固提高。第一环节:创设情境,引入新课。1、情境与导入(1)多媒体展示上海世博会工作人员要对世博会中国馆旁的一块长方形草坪进行改建,想利用草坪的一角划分出一块直角三角形草坪,问:划分后剩下的草坪是什么图形?(2)类比三角形的定义得出多边形的定义,学习多边形的边、顶点、内角概念。(3)例举世博园里各国会馆建筑中的多边形实例,引出凸多边形与凹多边形的概念。2、说明(1)通过现实情境的展示,调动学生的情绪,激发进一步学习的兴趣。(2)培养学生的动手能力。(3)对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。(4)借助于自制的直观教具来说明多边形定义中“在平面内”这一条件,以及世博会中各参展国家的会馆建筑图片中的各式各样形状的平面图形来突出“线段”、“首位顺次连接”等这些概念中的关键词,易于学生理解,也达到了化解难点的目的。同时,也利用两张图片,自然引出凹凸多边形的概念及如何区分的方法,也进一步规范认识:今后如教材中没有特殊说明的话,所指多边形都是凸多边形。(5)把学生的注意力自然引入本课研究方向,为探索多边形的内角和作铺垫。第二环节:合作交流,探索新知。1、合作与探究(1)定义:联结多边形的两个不相邻顶点的线段叫做多边形的对角线。(2)观察图形并回答四边形、五边形、六边形分别从一个顶点出发可以画多少条对角线?类比归纳得到从边形的一个顶点出可以画多少条对角线?类比归纳得到:从边形的一个顶点出发可以引条对角线,这些对角线把这些多边形分别分成了个三角形。请计算四边形、五边形、六边形、边形的内角和。多边形的内角和定理:边形的内角和等于 (3的整数)。(3)探究我们知道,可以通过把多边形分成几个三角形,从而推出多边形的内角和公式,那还有其他的划分方法吗?请以四边形为例小组合作交流。2、说明(1)通过学习了解什么叫做多边形的对角线后自然过渡到如何求多边形的内角和。(2)小组交流合作可以激发每个学生参与,落实面向全体学生,学生可以主动地、富有个性地学习,形成知识辐射。(3)鼓励学生敢于在课堂发表自己的不同见解,培养探索精神。(4)通过几何画板,动态展示多种分割方法,发散学生的思维。(5)从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。利用几何画板的动态演示,达到教学的更优化效果。第三环节:应用新知,尝试练习。1、应用与尝试(1)例题讲解一例1.求十边形的内角和。口答:五边形、六边形、十二边形的内角和分别是多少度?例2.已知一个多边形的内角和是,求它的边数。(2)尝试练习1)n+1边形的内角和比n边形的内角和大 度;2)一个多边形的内角和不可能是( )A、1800 B、360 C、1000D、9003)在四边形中,则 度4)如图DF是边CD的延长线,则图中= 度5)一个多边形的内角和是1800,它是 边形。(3)例题讲解二例3.一个多边形的各个内角都是120,求它的边数。(4)巩固与应用1)一个多边形的各个内角都是90,则它是几边形?2)小明和妈妈参观世博园时正好看见建筑工人在铺设绿地人行道,小明发现他们选用的是每条边和每个内角都相等的六边形地砖,于是他问妈妈:能不能选用每条边和每个内角都相等的五边形地砖呢?你能回答小明的问题吗?2、说明(1)例题1是已知多边形的边数求内角和;例题2是已知多边形的内角和求边数。这两题是教师板书,学生口答一起完成,达到熟悉多边形内角和定理的定理,并熟练应用的目的。(2)尝试练习1)中的练习比较简单,其中前2道比较基本,可采用抢答的形式完成,目的是复习当天所学,了解学生学习效果。(3)安排例题3的目的是为后面的巩固应用设计好铺垫。(4)在巩固与应用2)中的小题,培养学生应用数学知识解决实际问题的能力,也起到首尾呼应,让课堂气氛活跃。(5)第5)题让学生感受数学的趣味性,以及与实际生活的联系。第四环节:归纳总结,形成体系。1、提问与总结师提问:这节课你学到了哪些知识?你学到了哪些解决数学问题的方法呢?2、说明鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。第五环节:布置作业,巩固提高。1、练习与提高(1)编题与解题:围绕 n边形的内角和公式 (n2)180,自编自解3道习题。(2)练习册:练习册22.1。(3)选做题:一同学在进行多边形的内角和计算时,求得内角和为1125,可能吗?当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?它的边数是几呢?2、说明适当的对作业进行分层设计,让学有余力的学生得到拓展。四、教法特点与预期效果本节课本人采用了探究式教学方法,整个探究学习的过程贯穿了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。合理地利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。本节课把学生熟悉的世博会场景引入课堂,为学生提供丰富多彩的学习素材,在教学上充分发挥小组合作的优势,力求使每个学生都积极参与,都有所收获。学生能主动地从事观察、实验、猜测、验证、推理与交流等探索实践活动,并能应用所学数学知识去分析和解决实际问题。在教师的指导下,他们利用已有的知识、经验、背景材料等,通过自主探究、合作交流,进行“再创造”、“再发现”而获得所学数学知识。在教学中我注重了知识学习的结果,但更注重探索过程,并在这个过程中培养学生的独立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论