高二数学《古代数学中的算法》教案.doc_第1页
高二数学《古代数学中的算法》教案.doc_第2页
高二数学《古代数学中的算法》教案.doc_第3页
高二数学《古代数学中的算法》教案.doc_第4页
高二数学《古代数学中的算法》教案.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高二数学古代数学中的算法教案(1)了解中国古代数学中求两个正整数最大公约数的算法;(2)通过对“更相减损之术”的学习,更好的理解将要解决的问题“算法化”的思维方法,并注意理解推导“更相减损术”的操作步骤。2.过程与方法目标(1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻辑思维能力;(2)学会借助实例分析,探究数学问题。3.情感与价值目标(1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;(2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。二教学重点与难点重点:了解“更相减损之术”的算法。难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。三教学方法通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。四教学过程1.复习导入我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。设计意图:通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。2.学习新知例:求和的最大公约数(1)利用辗转相除法步骤:计算出 的余数,再将前面的除数作为新的被除数, ,余数为,则此时的除数即为和的最大公约数。理论依据: ,得 与 有相同的公约数来源:21世纪教育网(2)更相减损之术步骤:以两数中较大的数减去较小的数,即;以差数和较小的数3构成新的一对数,对这一对数再用大数减去小数,即,再以差数和较小的数构成新的一对数,对这一对数再用大数减去小数,即,继续这一过程,直到产生一对相等的数,这个数就是最大公约数即 理论依据:由 ,得 与 有相同的公约数 设计意图:求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。3.例题讲解例1 :用等值算法(更相减损术)求下列两数的最大公约数。(1)225,135 (2)98,280例2:用辗转相除法验证上例中两数的最大公约数是否正确。设计意图:巩固所学知识,进一步加深对知识的理解,用辗转相除法步骤较少,而更相减损术虽然有些步骤较长,但运算简单。体会我国古代数学中“寓理于算”的思想。4.课后小结(1)求最大公约数的辗转相除法和更相减损法;(2)体会数学文化在学习中的应用。设计意图:学生学后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论