已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学(理科)一轮复习一元二次不等式及其解法学案含答案 学案34 一元二次不等式及其解法导学目标: 1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图自主梳理 1一元二次不等式的定义只含有一个未知数,且未知数的最高次数是_的不等式叫一元二次不等式2二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系判别式b24ac 00 0二次函数yax2bxc(a 0)的图象 一元二次方程ax2bxc0(a 0)的根有两相异实根x1,2bb24ac2a(x1 x2)有两相等实根x1x2_没有实根一元二次不等式ax2bxc 0的解集a 0x|x x1,或x x2x|x_a 0x|x1 x x2_自我检测 1(2011 广州模拟)已知p:关于x的不等式x22axa 0的解集是R,q:1 a 0,则p是q的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件2设函数f(x)x24x6,x0,x6, x 0, 则不等式f(x) f(1)的解集是( )A(3,1)(3,) B(3,1)(2,)C(1,1)(3,) D(,3)(1,3)3已知不等式x22x3 0的解集为A,不等式x2x6 0的解集是B,不等式x2axb 0的解集是AB,那么ab等于( )A3 B1 C1 D34(2011 厦门月考)已知f(x)ax2xc 0的解集为(3,2),则yf(x)的图象是( )5当x(1,2)时,不等式x2mx4 0恒成立,则m的取值范围为_.探究点一 一元二次不等式的解法例1 解下列不等式:(1)x22x23 0;(2)9x26x10.变式迁移1 解下列不等式:(1)2x24x3 0;(2)3x22x80;(3)8x116x2.探究点二 含参数的一元二次不等式的解法例2 已知常数aR,解关于x的不等式ax22xa 0. 变式迁移2 解关于x的不等式ax2(a1)x1 0.探究点三 一元二次不等式恒成立问题例3 (2011 巢湖月考)已知f(x)x22ax2 (aR),当x1,)时,f(x)a恒成立,求a的取值范围 变式迁移3 (1)关于x的不等式4xmx22x3 2对任意实数x恒成立,求实数m的取值范围(2)若不等式x2px 4xp3对一切0p4均成立,试求实数x的取值范围转化与化归思想的应用例 (12分)已知不等式ax2bxc 0的解集为(,),且0 ,求不等式cx2bxa 0的解集【答题模板】解 由已知不等式的解集为(,)可得a 0,为方程ax2bxc0的两根,由根与系数的关系可得ba 0, ca 0. 4分a 0,由得c 0,5分则cx2bxa 0可化为x2bcxac 0.6分,得bc 11 0,由得ac11 1 0,1、1为方程x2bcxac0的两根10分0 ,不等式cx2bxa 0的解集为x|x 1或x 112分【突破思维障碍】由ax2bxc 0的解集是一个开区间,结合不等式对应的函数图象知a 0,要求cx2bxa 0的解集首先需要判断二次项系数c的正负,由方程根与系数关系知ca 0,因a 0,c 0,从而知道cx2bxa 0的解集是x大于大根及小于小根对应的两个集合要想求出解集,需用已知量,代替参数c、b、a,需对不等式cx2bxa 0两边同除c或a,用、代替后,就不难找到要求不等式对应方程的两根,从而求出不等式的解集本题较好地体现了三个“二次”之间的相互转化1三个”二次”的关系:二次函数是主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零和不为零的两种情况,一般讨论二次函数常将问题转化为一元二次方程和一元二次不等式来研究,而讨论一元二次方程和一元二次不等式又常与相应的二次函数相联系,通过二次函数的图象及性质来解决一元二次不等式解集的端点值就是相应的一元二次方程的根,也是相应的二次函数的图象与x轴交点的横坐标,即二次函数的零点2解含参数的一元二次不等式的步骤:解含参数的一元二次不等式可按如下步骤进行:1二次项若含有参数应讨论参数是等于0、小于0、还是大于0.然后将不等式转化为二次项系数为正的形式.2判断方程的根的个数,讨论判别式与0的关系.3确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式3不等式恒成立问题:不等式恒成立,即不等式的解集为R,一元二次不等式ax2bxc 0 (a0)恒成立的条件是a 0,b24ac 0;ax2bxc 0 (a0)恒成立的条件是a 0,b24ac 0. (满分:75分)一、选择题(每小题5分,共25分)1函数y 的定义域是( )A2,1)(1,2 B2,1(1,2)C2,1)(1,2 D(2,1)(1,2)2(2010 抚顺模拟)已知集合Px|x1x1 0,集合Qx|x2x20,则xQ是xP的( )A充分条件但不是必要条件B必要条件但不是充分条件C充要条件D既不充分又不必要条件3(2011 银川模拟)已知集合Mx|x22 008x2 009 0,Nx|x2axb0,若MNR,MN(2 009,2 010,则( )Aa2 009,b2 010 Ba2 009,b2 010Ca2 009,b2 010 Da2 009,b2 0104若(m1)x2(m1)x3(m1) 0对任何实数x恒成立,则实数m的取值范围是( )Am 1 Bm 1Cm 1311 Dm 1或m 13115(创新题)已知a1 a2 a3 0,则使得(1aix)2 1 (i1,2,3)都成立的x的取值范围是( )A.0,1a1 B.0,2a1C.0,1a3 D.0,2a3二、填空题(每小题4分,共12分)6在R上定义运算 :x yx(1y),若不等式(xa) (xa) 1对任意实数x恒成立,则a的取值范围为_7已知函数f(x)log2x, x 0,x2, x0,则满足f(x) 1的x的取值范围为_8(2011 泉州月考)已知函数f(x)的定义域为(,),f(x)为f(x)的导函数,函数yf(x)的图象如右图所示,且f(2)1,f(3)1,则不等式f(x26) 1的解集为_三、解答题(共38分)9(12分)解关于x的不等式xaxa2 0 (aR) 10(12分)若不等式ax2bxc0的解集是x|13x2,求不等式cx2bxa 0的解集11(14分)(2011 烟台月考)已知函数f(x)x2ax3.(1)当xR时,f(x)a恒成立,求a的取值范围;(2)当x2,2时,f(x)a恒成立,求a的取值范围学案34 一元二次不等式及其解法自主梳理12 2.b2a b2a R 自我检测1C 2.A 3.A 4.D5(,5解析 记f(x)x2mx4,根据题意得m216 0,f 1 0,f 2 0, 解得m5.课堂活动区例1 解题导引 解一元二次不等式的一般步骤(1)对不等式变形,使一端为0且二次项系数大于0,即ax2bxc 0(a 0),ax2bxc 0(a 0)(2)计算相应的判别式(3)当0时,求出相应的一元二次方程的根(4)根据对应二次函数的图象,写出不等式的解集解 (1)两边都乘以3,得3x26x2 0,因为3 0,且方程3x26x20的解是x1133,x2133,所以原不等式的解集是x|133 x 133(2)不等式9x26x10,其相应方程9x26x10,(6)2490,上述方程有两相等实根x13,结合二次函数y9x26x1的图象知,原不等式的解集为R.变式迁移1 解 (1)不等式2x24x3 0可转化为2(x1)21 0,而2(x1)21 0,2x24x3 0的解集为 .(2)两边都乘以1,得3x22x80,因为3 0,且方程3x22x80的解是x12,x243,所以原不等式的解集是(,243,)(3)原不等式可转化为16x28x10,即(4x1)20,原不等式的解集为14例2 解题导引 (1)含参数的一元二次不等式,若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易因式分解,则可对判别式进行分类讨论,分类要不重不漏(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式(3)其次对方程的根进行讨论,比较大小,以便写出解集解 上述不等式不一定为一元二次不等式,当a0时为一元一次不等式,当a0时为一元二次不等式,故应对a进行讨论,然后分情况求解(1)a0时,解为x 0.(2)a 0时,44a2.当 0,即0 a 1时,方程ax22xa0的两根为11a2a,不等式的解集为x|11a2a x 11a2a当0,即a1时,x ;当 0,即a 1时,x .(3)当a 0时, 0,即1 a 0时,不等式的解集为x|x 11a2a或x 11a2a0,即a1时,不等式化为(x1)2 0,解为xR且x1. 0,即a 1时,xR.综上所述,当a1时,原不等式的解集为 ;当0 a 1时,解集为x|11a2a x 11a2a;当a0时,解集为x|x 0;当1 a 0时,解集为x|x 11a2a或x 11a2a;当a1时,解集为x|xR且x1;当a 1时,解集为x|xR变式迁移2 解 当a0时,解得x 1.当a 0时,原不等式变形为(x1a)(x1) 0,a 1时,解得1a x 1;a1时,解得x ;0 a 1时,解得1 x 1a.当a 0时,原不等式变形为(x1a)(x1) 0,1a 1,解不等式可得x 1a或x 1.综上所述,当a 0时,不等式解集为(,1a)(1,);当a0时,不等式解集为(1,);当0 a 1时,不等式解集为(1,1a);当a1时,不等式解集为 ;当a 1时,不等式解集为(1a,1)例3 解题导引 注意等价转化思想的运用,二次不等式在区间上恒成立的问题可转化为二次函数区间最值问题解 方法一 f(x)(xa)22a2,此二次函数图象的对称轴为xa.当a(,1)时,f(x)在1,)上单调递增,f(x)minf(1)2a3.要使f(x)a恒成立,只需f(x)mina,即2a3a,解得3a 1;当a1,)时,f(x)minf(a)2a2,由2a2a,解得1a1.综上所述,所求a的取值范围为3a1.方法二 令g(x)x22ax2a,由已知,得x22ax2a0在1,)上恒成立,即4a24(2a)0或 0,a 1,g 1 0.解得3a1.变式迁移3 解 (1)x22x3(x1)22 0,不等式4xmx22x3 2同解于4xm 2x24x6,即2x28x6m 0.要使原不等式对任意实数x恒成立,只要2x28x6m 0对任意实数x恒成立 0,即648(6m) 0,整理并解得m 2.实数m的取值范围为(,2)(2)x2px 4xp3,(x1)px24x3 0.令g(p)(x1)px24x3,则要使它对0p4均有g(p) 0,只要有g 0 0g 4 0.x 3或x 1.实数x的取值范围为(,1)(3,)课后练习区1A 由已知有 (x21)0,x21 0,x211. x 1或x 1,2x2.2x 1或1 x2.2D 化简得Px 1,或x 1,Qx2,或x1,集合P,Q之间不存在包含关系,所以xQ是xP的既不充分又不必要条件3D 化简得Mx|x 1或x 2 009,由MNR,MN(2 009,2 010可知Nx|1x2 010,即1,2 010是方程x2axb0的两个根所以b12 0102 010,a12 010,即a2 009.4C 当m1时,不等式变为2x6 0,即x 3,不符合题意当m1时,由题意知m1 0, m1 24 m1 3 m1 0,化简,得m1 0,11m22m13 0,解得m 1311.5B (1aix)2 1,即a2ix22aix 0,即aix(aix2) 0,由于ai 0,这个不等式可以化为xx2ai 0,即0 x 2ai,若对每个都成立,则2ai应最小,即ai应最大,也即是0 x 2a1.6(12,32)解析 由题意知,(xa) (xa) 1 (xa)(1xa) 1 x2x(a2a1) 0.因上式对xR都成立,所以14(a2a1) 0,即4a24a3 0.所以12 a 32.7(,1)(2,)解析 当x 0时,由log2x 1,得x 2;当x0时,由x2 1,得x 1.综上可知,x的取值范围为(,1)(2,)8(2,3)(3,2)解析 由导函数图象知当x 0时,f(x) 0,即f(x)在(,0)上为增函数;当x 0时,f(x) 0,即f(x)在(0,)上为减函数,故不等式f(x26) 1等价于f(x26) f(2)或f(x26) f(3),即2 x260或0x26 3,解得x(2,3)(3,2)9解 xaxa2 0 (xa)(xa2) 0,(2分)当a0或a1时,原不等式的解集为 ;(4分)当a 0或a 1时,a a2,此时a x a2;(7分)当0 a 1时,a a2,此时a2 x a.(10分)综上,当a 0或a 1时,原不等式的解集为x|a x a2;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 28245-2025自动锻压机噪声限值
- 2025年清远辅警协警招聘考试真题附答案详解(轻巧夺冠)
- (完整版)圆柱、圆锥的表面积和体积练习试题
- 2025年郴州辅警协警招聘考试真题附答案详解(培优)
- 2025年荆州辅警招聘考试真题含答案详解(达标题)
- 2025年莆田辅警招聘考试题库有完整答案详解
- 2025年舟山辅警协警招聘考试真题及答案详解(基础+提升)
- 2025年荆州辅警招聘考试真题含答案详解(完整版)
- 2025年湘潭辅警招聘考试真题含答案详解(模拟题)
- 2025年甘南州辅警招聘考试真题含答案详解(基础题)
- 医院感染暴发与处理流程规范
- 医学影像技术职业生涯规划书
- 妇科超声新进展
- 《家政服务业职业技能大赛-家政服务赛项技术文件》
- 高校思政说课课件
- 2025年福建省事业单位教师招聘考试地理学科专业知识试卷
- 肿瘤常见症状管理
- 2025电力企业技改大修项目全过程管理
- 医疗质量安全核心制度落实情况监测指标
- 赌博补偿协议书范本
- 《智能设备故障诊断》课件
评论
0/150
提交评论