




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.1.1 二次函数学习目标:1. 了解二次函数的有关概念2. 会确定二次函数关系式中各项的系数。3. 确定实际问题中二次函数的关系式。学习重点:二次函数的有关概念 学习难点:确定实际问题中二次函数的关系式一、自学互助(20分钟)1.若在一个变化过程中有两个变量x和y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说y是x的 ,x叫做 。2. 形如的函数是一次函数,当时,它是 函数;形如 的函数是反比例函数。3用16m长的篱笆围成长方形圈养小兔,圈的面积y()与长方形的长x(m)之间的函数关系式为 。分析:在这个问题中,可设长方形生物园的长为米,则宽为 米,如果将面积记为平方米,那么与之间的函数关系式为= ,整理为= .4.n支球队参加比赛,每两队之间进行一场比赛写出比赛的场次数m与球队数n之间的关系式_5.用一根长为40的铁丝围成一个半径为的扇形,求扇形的面积与它的半径之间的函数关系式是 。6.观察上述函数函数关系有哪些共同之处? 。7.归纳:一般地,形如 ,( )的函数为二次函数。其中是自变量,是_,b是_,c是_二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听思考,勇于质疑。4、要注意礼貌用语。三、合作交流(2分钟)(1)二次项系数为什么不等于0?答: 。(2)一次项系数和常数项可以为0吗?答: .四、跟踪练习(10分钟)1观察:;y200x2400x200;这六个式子中二次函数有 。(只填序号)2. 是二次函数,则m的值为_3.若物体运动的路段s(米)与时间t(秒)之间的关系为,则当t4秒时,该物体所经过的路程为 。4.二次函数当x2时,y3,则这个二次函数解析式为 5.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图)若设绿化带的BC边长为x m,绿化带的面积为y m2求y与x之间的函数关系式,并写出自变量x的取值范围五、总结反思 (2分钟)六、课后作业41页1、226.1.2二次函数的图象学习目标:1知道二次函数的图象是一条抛物线;2会画二次函数yax2的图象;3掌握二次函数yax2的性质,并会灵活应用学习重点:二次函数yax2的图象;学习难点:掌握二次函数yax2的性质,并会灵活应用一、自学互助(20分钟)1.画一个函数图象的一般过程是 ; ; 。2、画出函数,的图象解:列表:x432101234x2-1.51-0.500.511.52例2 画出函数,的图象二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、合作交流:1、抛物线的性质图象(草图)对称轴顶点开口方向有最高或最低点最值0当x_时,y有最_值,是_0当x_时,y有最_值,是_2.当0时,在对称轴的左侧,即 0时,随的增大而 ;在对称轴的右侧,即 0时随的增大而 。3、关于轴对称的抛物线有 对,它们分别是哪些?答: 。由此可知和抛物线关于轴对称的抛物线是 。4当0时,越大,抛物线的开口越_;当0时, 越大,抛物线的开口越_;因此,越大,抛物线的开口越_。四、课堂训练1函数的图象顶点是_,对称轴是_,开口向_,当x_时,有最_值是_2. 函数的图象顶点是_,对称轴是_,开口向_,当x_时,有最_值是_3. 二次函数的图象开口向下,则m_四、总结反思 (2分钟)五、课后作业41页3、426.1.3 二次函数的图象(一)学习目标1知道二次函数与的联系2.掌握二次函数的性质,并会应用;学习重点:类比一次函数的平移和二次函数的性质学习,要构建一个知识体系。一、自学互助1、直线可以看做是由直线 得到的。由此你能推测二次函数与的图象之间又有何关系吗?猜想: 。x32101231.填表:开口方向顶点对称轴有最高(低)点增减性2、在同一直角坐标系中,画出二次函数,的图象2可以发现,把抛物线向_平移_个单位,就得到抛物线;把抛物线向_平移_个单位,就得到抛物线.3抛物线,的形状_开口大小相同。二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、知识梳理:(一)抛物线特点:1.当时,开口向 ;当时,开口 ;2. 顶点坐标是 ;3. 对称轴是 。(二)抛物线与形状相同,位置不同,是由 平移得到的。(填上下或左右)二次函数图象的平移规律:上 下 。(三)的正负决定开口的 ;决定开口的 ,即不变,则抛物线的形状 。因为平移没有改变抛物线的开口方向和形状,所以平移前后的两条抛物线值 。四、跟踪练习:1.抛物线向上平移3个单位,就得到抛物线_;抛物线向下平移4个单位,就得到抛物线_2抛物线向上平移3个单位后的解析式为 ,它们的形状_,当= 时,有最 值是 。3由抛物线平移,且经过(1,7)点的抛物线的解析式是 ,是把原抛物线向 平移 个单位得到的。4. 写出一个顶点坐标为(0,3),开口方向与抛物线的方向相反,形状相同的抛物线解析式_5. 抛物线关于x轴对称的抛物线解析式为_6.二次函数的经过点A(1,-1)、B(2,5).求该函数的表达式;若点C(-2,),D(,7)也在函数的上,求、的值。四、总结反思 (2分钟)五、课后作业41页3、426.1.3 二次函数的图象(二)学习目标1会画二次函数的图象;2.知道二次函数与的联系3.掌握二次函数的性质,并会应用;学习重点 难点:掌握二次函数的性质一、自学互助1.将二次函数的图象向上平移2个单位,所得图象的解析式为 。2.将抛物线的图象向下平移3个单位后的抛物线的解析式为 。3、画出二次函数,的图象;先列表:432101234归纳:(1)的开口向 ,对称轴是直线 ,顶点坐标是 。图象有最 点,即= 时,有最 值是 ;在对称轴的左侧,即 时,随的增大而 ;在对称轴的右侧,即 时随的增大而 。 可以看作由向 平移 个单位形成的。(2)的开口向 ,对称轴是直线 ,顶点坐标是 , 图象有最 点,即= 时,有最 值是 ;在对称轴的左侧,即 时,随的增大而 ;在对称轴的右侧,即 时随的增大而 。可以看作由向 平移 个单位形成的。二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、知识梳理(一)抛物线特点:1.当时,开口向 ;当时,开口 ;2. 顶点坐标是 ;3. 对称轴是直线 。(二)抛物线与形状相同,位置不同,是由 平移得到的。(填上下或左右)结合学案和课本第8页可知二次函数图象的平移规律:左 右 ,上 下 。(三)的正负决定开口的 ;决定开口的 ,即不变,则抛物线的形状 。因为平移没有改变抛物线的开口方向和形状,所以平移前后的两条抛物线值 。四、课堂训练1抛物线的开口_;顶点坐标为_;对称轴是直线_;当 时,随的增大而减小;当 时,随的增大而增大。2. 抛物线的开口_;顶点坐标为_;对称轴是直线_;当 时,随的增大而减小;当 时,随的增大而增大。3. 抛物线的开口_;顶点坐标为_;对称轴是_;4.抛物线向右平移4个单位后,得到的抛物线的表达式为_5. 抛物线向左平移3个单位后,得到的抛物线的表达式为_6将抛物线向右平移1个单位后,得到的抛物线解析式为_7抛物线与y轴的交点坐标是_,与x轴的交点坐标为_8. 写出一个顶点是(5,0),形状、开口方向与抛物线都相同的二次函数解析式_五、总结反思 (2分钟)六、课后作业26.1.3二次函数的图象(三)【学习目标】1会画二次函数的顶点式的图象;2掌握二次函数的性质;一、自学互助1.将二次函数的图象向上平移2个单位,所得图象的解析式为 。2.将抛物线的图象向左平移3个单位后的抛物线的解析式为 。3在右图中做出的图象:观察:1. 抛物线开口向 ;顶点坐标是 ;对称轴是直线 。4. 抛物线和的形状 ,位置 。(填“相同”或“不同”)5. 抛物线是由如何平移得到的?答: 二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、合作交流平移前后的两条抛物线值变化吗?为什么?答: 。(一)抛物线的特点:1.当时,开口向 ;当时,开口 ;2. 顶点坐标是 ;3. 对称轴是直线 。(二)抛物线与形状 ,位置不同,是由平移得到的。二次函数图象的平移规律:左 右 ,上 下 。(三)平移前后的两条抛物线值 。四、跟踪训练1.二次函数的图象可由的图象( )A.向左平移1个单位,再向下平移2个单位得到 B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到 D.向右平移1个单位,再向上平移2个单位得到2.抛物线开口 ,顶点坐标是 ,对称轴是 ,当x 时,y有最 值为 。开口方向顶点对称轴3.填表:4.函数的图象可由函数的图象沿x轴向 平移 个单位,再沿y轴向 平移 个单位得到。5.若把函数的图象分别向下、向左移动2个单位,则得到的函数解析式为 。6. 顶点坐标为(2,3),开口方向和大小与抛物线相同的解析式为( )A B CD7.一条抛物线的形状、开口方向与抛物线相同,对称轴和抛物线相同,且顶点纵坐标为0,求此抛物线的解析式.五、总结反思 (2分钟)六、课后作业26.1.3二次函数的图象(四)学习目标:会用二次函数的性质解决问题;学习重点: 二次函数的图象和性质一、自学互助1.抛物线开口向 ,顶点坐标是 ,对称轴是 ,当x 时,y有最 值为 。当 时,随的增大而增大.2. 抛物线是由如何平移得到的?答: 3、抛物线的顶点坐标为(2,-3),且经过点(3,2)求该函数的解析式?4.仔细阅读课本 分析:由题意可知:池中心是 ,水管是 ,点 是喷头,线段 的长度是1米,线段 的长度是3米。由已知条件可设抛物线的解析式为 。抛物线的解析式中有一个待定系数,所以只需再确定 个点的坐标即可,这个点是 。求水管的长就是通过求点 的 坐标。二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、合作交流5、如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. AO= 3米,现以O点为原点,OM所在直线为x轴建立直角坐标系.(1) 直接写出点A及抛物线顶点P的坐标;(2) 求出这条抛物线的函数解析式;四、跟踪训练6、抛物线与轴交于A,B两点,交轴于点D,抛物线的顶点为点C(1) 求ABD的面积。(2) 求ABC的面积。(3) 点P是抛物线上一动点,当ABP的面积为4时,求所有符合条件的点P的坐标。(4) 点P是抛物线上一动点,当ABP的面积为8时,求所有符合条件的点P的坐标。(5) 点P是抛物线上一动点,当ABP的面积为10时,求所有符合条件的点P的坐标。2.如图,在平面直角坐标系中,圆M经过原点O,且与轴、轴分别相交于两点(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于轴且经过点M,顶点C在M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得?若存在,请求出点P的坐标;若不存在,请说明理由五、总结反思 (2分钟)六、课后作业26.1.4二次函数的图象学习目标 :1.能通过配方把二次函数化成的形式,从而确定开口方向、对称轴和顶点坐标。2熟记二次函数的顶点坐标公式;3会画二次函数一般式的图象一、自学互助1.抛物线的顶点坐标是 ;对称轴是直线 ;当= 时有最 值是 ;当 时,随的增大而增大;当 时,随的增大而减小。2. 二次函数解析式中,很容易确定抛物线的顶点坐标为 ,所以这种形式被称作二次函数的顶点式。3、你能直接说出函数 的图像的对称轴和顶点坐标吗? 解:的顶点坐标是 ,对称轴是 .、4、像这样我们可以把一个一般形式的二次函数用 的方法转化为 式从而直接得到它的图像性质.5、用配方法把下列二次函数化成顶点式: 6、归纳:二次函数的一般形式可以用配方法转化成顶点式: ,因此抛物线的顶点坐标是 ;对称轴是 ,7、用顶点坐标和对称轴公式也可以直接求出抛物线的顶点坐标和对称轴,这种方法叫做公式法。 用公式法写出下列抛物线的开口方向、对称轴及顶点坐标。 二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、合作交流8、用描点法画出的图像.(1)顶点坐标为 ;(2)列表:顶点坐标填在 ;(列表时一般以对称轴为中心,对称取值)(3)描点,并连线:(4)观察图象有最 点,即= 时,有最 值是 ; 时,随的增大而增大; 时随的增大而减小。该抛物线与轴交于点 。该抛物线与轴有 个交点.四、总结反思 (2分钟)五、课后作业26.1.5用待定系数法求二次函数的解析式学习目标1.能根据已知条件选择合适的二次函数解析式;2.会用待定系数法求二次函数的解析式。一、自学互助1、已知抛物线的顶点坐标为(-1,2),且经过点(0,4)求该函数的解析式.解:2.一次函数经过点A(-1,2)和点B(2,5),求该一次函数的解析式。分析:要求出函数解析式,需求出的值,因为有两个待定系数,所以需要知道两个点的坐标,列出关于的二元一次方程组即可。解:3. 已知一个二次函数的图象过(1,5)、()、(2,11)三点,求这个二次函数的解析式。解:二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、合作交流用待定系数法求二次函数的解析式通常用以下2种方法:设顶点式和一般式。1已知抛物线过三点,通常设函数解析式为 ; 2已知抛物线顶点坐标及其余一点,通常设函数解析式为 。四、跟踪练习:1已知二次函数的图象的顶点坐标为(2,3),且图像过点(3,1),求这个二次函数的解析式2.已知二次函数的图象过点(1,2),则的值为_3.一个二次函数的图象过(0,1)、(1,0)、(2,3)三点,求这个二次函数的解析式。4. 已知双曲线与抛物线交于A(2,3)、B(,2)、c(3, )三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A、点B、点C,并求出ABC的面积,5.如图,直线交轴于点A,交轴于点B,过A,B两点的抛物线交轴于另一点C(3,0),(1)求该抛物线的解析式; 在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.五、总结反思 (2分钟)六、课后作业26.2用函数观点看一元二次方程(一)学习目标1、 体会二次函数与方程之间的联系。2、 理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,一、自学互助1.直线与轴交于点 ,与轴交于点 。2.一元二次方程,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根;3.解下列方程(1) (2) (3)4.观察二次函数的图象,写出它们与轴的交点坐标:函数图 象交点与轴交点坐标是 与轴交点坐标是 与轴交点坐标是 5.对比第3题各方程的解,你发现什么? 二、展评点拨(10分钟)展评交流预设表展示内容展示形式展示组号点评组号要求1、展评要声音洪亮,讲解清晰。2、展示者要讲清思路方法,并征求同学老师意见。3、展评中师生要注意倾听,勇于质疑。4、要注意礼貌用语。三、合作交流一元二次方程的实数根就是对应的二次函数与轴交点的 .(即把代入)二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为)二次函数与一元二次方程 与轴有 个交点 0,方程有 的实数根与轴有 个交点;这个交点是 点 0,方程有 实数根与轴有 个交点 0,方程 实数根.二次函数与轴交点坐标是 .四、跟踪练习1. 二次函数,当1时,_;当0时,_2抛物线与轴的交点坐标是 ,与轴的交点坐标是 ;3.二次函数,当_时,3(5)(4)4.如图,一元二次方程的解为 。5.如图,一元二次方程的解为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区网格员消防知识培训课件
- 江西省南昌市高新区2024-2025学年五年级下册期末考试语文试卷(有答案)
- 瓷砖铺贴合同范本
- 小区消防监控合同范本
- 办学资质租赁合同范本
- 美甲店工作安全合同范本
- 塘渣购销合同范本
- 家居定制销售合同范本
- 数字营销 课件 第2章 数字营销理论
- 小戏小品导演合同范本
- (高清版)DG∕TJ 08-2214-2024 道路照明工程建设技术标准
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 涉密采购保密协议书
- 《小肠的结构与功能》课件
- 财务岗笔试试题及答案
- 鱼油制品质量控制-全面剖析
- 耳石症课件教学课件
- 2025年人教版小学四年级下册奥林匹克数学竞赛试卷(附参考答案)
- 语音主播协议合同
- 2025届高考作文备考之主题素材:家国情怀
- 蜜雪冰城加盟合同(2025年版)
评论
0/150
提交评论