




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考椭圆经典题目1.(2010海南高考理科T20)设分别是椭圆E:(ab0)的左、右焦点,过斜率为1的直线与E 相交于两点,且,成等差数列.()求E的离心率;()设点P(0,-1)满足,求E的方程.【思路点拨】利用等差数列的定义,得出,满足的一个关系,然后再利用椭圆的定义进行计算.【规范解答】()由椭圆的定义知,又得 ,的方程为,其中设,则两点坐标满足方程组 化简得,则 ,.因为直线AB斜率为1,所以得 ,故,所以E的离心率.()设两点的中点为,由()知,.由,可知.即,得,从而.椭圆E的方程为.2.(2010辽宁高考文理科20)设椭圆C:的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60o,.(I) 求椭圆C的离心率;(II) 如果|AB|=,求椭圆C的方程.【思路点拨】(I)联立直线方程和椭圆方程,消去x,解出两个交点的纵坐标,利用这两个纵坐标间的关系,得出a、b、c间的关系,求出离心率. (II)利用弦长公式表示出|AB|,再结合离心率和,求出a、b,写出椭圆方程.【方法技巧】1、直线、圆锥曲线的综合问题,往往是联立成方程组消去一个x(或y),得到关于y(或x)的一元二次方程,使问题得以解决.2、弦长问题,注意使用弦长公式,并结合一元二次方程根与系数的关系来解决问题.3.(2010天津高考文理科20)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4(1) 求椭圆的方程;(2) 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.【思路点拨】(1)建立关于a,b的方程组求出a,b;(2)构造新的一元二次方程求解。【规范解答】(1)由,得,再由,得由题意可知, 解方程组 得 a=2,b=1,所以椭圆的方程为。(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),于是A,B两点的坐标满足方程组由方程组消去整理,得由得设线段AB是中点为M,则M的坐标为以下分两种情况:(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是(2)当k时,线段AB的垂直平分线方程为(后边的Y改为小写)令x=0,解得由整理得综上4.(2010福建高考理科17)已知中心在坐标原点O的椭圆C经过点A(2 , 3),且点F(2 ,0)为其右焦点.(I)求椭圆C的方程;(II)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,说明理由.【思路点拨】第一步先求出左焦点,进而求出a,c,然后求解椭圆的标准方程;第二步依题意假设直线的方程为,联立直线与椭圆的方程,利用判别式限制参数t的范围,再由直线OA与直线的距离等于4列出方程,求解出t的值,注意判别式对参数t的限制.【规范解答】(I)依题意,可设椭圆的方程为,且可知左焦点为,从而有 ,解得,又,故椭圆的方程为;(II)假设存在符合题意的直线,其方程为,由得,因为直线与椭圆C有公共点,所以,解得。另一方面,由直线OA与直线的距离等于4可得,由于,所以符合题意的直线不存在.【方法技巧】在求解直线与圆锥曲线的位置关系中的相交弦问题时,我们一定要注意判别式的限制。因为抛物与直线有交点,注意应用进行验证可避免增根也可以用来限制参数的范围.5.OF2F1AXY(2010安徽高考理科19)已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率。 (1)求椭圆的方程;(2)求的角平分线所在直线的方程;(3)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由。【思路点拨】(1)设出椭圆的标准方程,再根据题设条件构建方程(组)求解;(2)根据角平分线的性质求出直线的斜率或直线上的一个点的坐标,进而求得直线的方程;(3)先假设椭圆上存在关于直线对称的相异两点,在此基础之上进行推理运算,求解此两点,根据推理结果做出判断。【规范解答】(1)设椭圆的方程为(),由题意,又,解得:椭圆的方程为(2)方法1:由(1)问得,又,易得为直角三角形,其中设的角平分线所在直线与x轴交于点,根据角平线定理可知:,可得,直线的方程为:,即。方法2:由(1)问得,又,直线的方程为:,即。(3)假设椭圆上存在关于直线对称的相异两点、,令、,且的中点为,又,两式相减得: ,即(3),又在直线上,(4)由(3)(4)解得:,所以点与点是同一点,这与假设矛盾,故椭圆上不存在关于直线对称的相异两点。【方法技巧】1、求圆锥曲线的方程,通常是利用待定系数法先设出曲线的标准方程,再根据题设条件构建方程(组)求解;.2、利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 排土犁司机上岗考核试卷及答案
- 直播销售员技术考核试卷及答案
- 水供应输排工专业知识考核试卷及答案
- 2024-2025学年河北省衡水市饶阳县中考数学考试模拟冲刺卷含解析
- 湖南省娄底市冷水江市2025年中考数学最后一模试卷含解析
- 宫颈炎症课件
- 安全培训机械伤害课件
- 考点解析-湖北省应城市中考数学真题分类(平行线的证明)汇编专项测试试卷(含答案详解)
- 定期安全培训签到表课件
- 常用免疫抑制剂使用及安全注意事项
- 人教版(2024新版)七年级上册英语全册教案
- 临床微生物学检验标本的采集和转运试卷
- 佳酿贺喜升学宴金榜题名踏新程热烈庆祝某同学金榜题名模板
- 医学美容技术专业《美容医学咨询与沟通》课程标准
- 营养指导员理论知识考试题库及答案
- 2024生产安全事故隐患排查治理规定(修订征求意见稿)
- 2024年贵州贵安新区产业发展控股集团有限公司招聘笔试参考题库含答案解析
- JB-T 14509-2023 反渗透海水淡化设备技术规范
- 2024年儿童保健考试复习题库(含答案)
- 砖厂机械伤害安全培训课件
- 02J401 钢梯【含03年修改】图集
评论
0/150
提交评论