




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数应运题专题一(最大利润问题) 最大利润问题 这类问题只需围绕一点来求解,那就是 总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y , 而自变量可能有两种情况:1) 自变量x是所涨价多少,或降价多少2) 自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为 总利润=单件商品利润*销售数量这个等式中的 单件利润 里必然有个自变量x,销售数量 里也必然有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式,所以如果在列表达式时发现 单利润 里没有x,或 销售数量 里没有x, 那恭喜你,此题0分!下面借助例题加以理解: 商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量所以按原价出售的话,则y=140*(100-80)=2800 元答案:(1)y=140*(100-80)=2800 (元)(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润这么想:因为降价,所以单利润会有变动,又因为进价不可能变,那降多少元,利润减少多少元,降价x元,利润就减少x元,所以单利润就减少x元,即单利润变为:(100-80-x)又想 :因为降价卖的就多,那么数量怎么变?原来一天140件,降1元多卖10件,降x元就应该多卖10x件,所以数量就变为:(140+10x)(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值,重点难点:(5)现题目条件不变,若将降价后的销售价格设为自变量x,求因变量y与自变量x的关系式解析:原来的自变量是什么?是降低的价格,而现在是降后的售价自变量一变化,那么关系式就全变了,所以之前的一切关系都要作废但总利润=单利润*数量,这个关系是永远不变的!所以要找到y与x的关系,还是从此处出发这么想:单利润=售价-进价,进价是不变的,而售价现在变为x了, 则单利润就是(x-80),而这时数量就变复杂了,这么想:数量变化依然是因为降价而造成的,始终有降价1元多卖10件这一关系,所以如果知道了降多少元,就必然知道多卖多少件,那么降了多少呢?最初的售价是100元,降价后的售价是x元,那么之间的差值就是所降的价格,即降价为(100-x),我们知道降1元多卖10件,现在降了(100-x),那么就应该多卖10*(100-x)件,注意这只是多买的,总共买的应该是原来卖的加上多卖的,即140+10*(100-x),所以数量就是140+10*(100-x)单利润知道了是(x-80),销售数量也知道了是 140+10*(100-x)则总利润y=(x-80)* 140+10*(100-x)(一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式:1、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。若商场平均每天要盈利1200元,每件衬衫应降价多少元?若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。例2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式:2、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)设每件商品的售价上涨元(为正整数),每个月的销售利润为元(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?(二)售价为未知数例3、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个。考虑了所有因素后该零售店每个面包的成本是5角。设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)。用含x的代数式分别表示出每个面包的利润与卖出的面包个数;求y与x之间的函数关系式;当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?变式:2、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023一年级数学下册 二 下雨了-认识钟表说课稿 青岛版六三制
- 中台服装店营销方案
- 酒精蒸馏工技能巩固考核试卷及答案
- 乳品干燥工培训考核试卷及答案
- 钻石检验员知识考核试卷及答案
- 橡胶在城市户外家具耐候性分析报告
- 热处理设备气氛保护技术应用分析
- 餐饮门店收银员操作技能提升方案
- 什么是团建活动策划方案
- 幼儿园消防安全教育教案及活动设计
- 三年级语文听听 秋的声音
- 幼儿园小班益智区指导目标
- 学前儿童英语教育与活动指导(学前教育专业)全套教学课件
- 2024年湖南长沙湘江新区所属事业单位招聘12人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 《电能计量装置安装接线规则》
- 物质与意识的辩证关系
- 网络热梗是否融入现实生活
- IEP个别化教育计划-课件
- 128个自然拼读口诀表打印
- 汽车机械基础 课件 绪论
- 浙江博瑞电子科技有限公司新建年产175吨高纯六氟丁二烯项目环境影响报告书
评论
0/150
提交评论