



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选文库基本不等式的变式及应用不等式是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用1、十种变式; ; ; 若,则; 则若 若,则上述不等式中等号成立的充要条件均为:若,则(当且仅当时等号成立)(当且仅当时等号成立)2、应用例1、若,且,求证:证法一:由变式得即同理:,因此由于三个不等式中的等号不能同时成立,故评论:本解法应用“”观察其左右两端可以发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。证法二:由变式得同理: 故结论成立 评论:本解法应用“”,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。证法三:由变式得故 即得结论评论:由基本不等式易产生,两边同时加上即得,于是便有了变式,本变式的功能可以将平方进行“分拆”与“合并”。本解法是将平方进行分拆,即由整体平方转化为个整平方,从而有效的去掉了根号。例2、设,求证:证明:由变式得,三式相加即得:评论:本解法来至于“若,则”,这个变式将基本不等式转化成更为灵活的形式,当分式的分子与分母出现平方与一次的关系时,立即可以使用,方便快捷。例3、实数满足,求的最大值与最小值解析:结合变式得因此即当且仅当、再结合条件得及时,分别获得最小值与最大值;评论:由再结合即得变式,这可是一个很特别的公式,它沟通了两分式和与由两分式产生的一个特殊分式的关系,它的灵活应用不仅可以为我们解决基本不等式的最值问题,也为我们处理圆锥曲线问题中的最值问题开辟了新的途径。例4、已知,且,求的最小值解析:由变式上述两不等式当且仅当、再结合得或时,取得最小值;评论:由结合两边同除以即得变式,本题两次使用基本不等式,第一次应用变式,第二次应用基本不等式。值得注意的是两次等号成立的条件必须一致,否则,最值是取不到的。例5、当时,不等式恒成立,求的最大值;解:由变式、得上述三个不等式中等号均在同一时刻时成立由故的最大值为;评论:由再结合即得变式;又由得结合,两边同除即得变式。本题的求解,虽然“廖廖几步”,但来之实在不易。首先这两个变式不一定大家都熟悉,其次,三次使用变式进行转化,必须保证等号在同一时刻取得,可谓步履维艰。可以看出:不等式的各种变式及其灵活运用给予我们带来了不仅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晋城市中医院主任护师岗位胜任力评估
- 2025年食品品牌形象塑造计划可行性分析报告
- 2025至2030年中国高效能低噪音风冷螺杆热泵机组行业发展研究报告
- 2025年中国氯硝柳胺项目创业计划书
- 中国电子级三氯氢硅项目创业投资方案
- 2025年智慧勘探解决方案
- 2025年中国热缩材料项目投资计划书
- 2025年教师资格考试教育综合理论知识复习题库及答案
- 2025年造价专业的实习报告5
- 中国干电池制造项目投资计划书
- 技术经纪人(初级)考试试题(附答案)
- 《菊花》精致课件图片
- 纪检业务大比武复习测试卷含答案
- 新产品开发研发进度推进计划
- 遵义市正安县公安局招聘警务辅助人员笔试真题2024
- 人教版八年级下英语单词默写版与完整版
- 《电化学储能电站接入电网技术规定》专题培训
- 工行信贷a类中级试题及答案
- PMO项目管理制度
- 2024年创新方法大赛考试题库
- 达芬奇手术器械处理流程及质控要点
评论
0/150
提交评论