近三年全国中考数学试题分类汇编汇编——二次函数(1).doc_第1页
近三年全国中考数学试题分类汇编汇编——二次函数(1).doc_第2页
近三年全国中考数学试题分类汇编汇编——二次函数(1).doc_第3页
近三年全国中考数学试题分类汇编汇编——二次函数(1).doc_第4页
近三年全国中考数学试题分类汇编汇编——二次函数(1).doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

邓州市都司二初中2013年九年级数学中招复习资料最近三年中考试题专辑:二次函数2010-2012全国各地中考数学试题分类汇编二次函数专辑:一.选择题1(2012菏泽)已知二次函数的图像如图所示,那么一次函数和反比例函数在同一平面直角坐标系中的图像大致是(A) ABCD2(2012烟台)已知二次函数y=2(x3)2+1下列说法:其图象的开口向下;其图象的对称轴为直线x=3;其图象顶点坐标为(3,1);当x3时,y随x的增大而减小则其中说法正确的有(T)A1个B2个C3个D4个3(2012广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()Ay=x21By=x2+1Cy=(x1)2Dy=(x+1)24(2012泰安)将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为(E)A B C D5(2012泰安)二次函数的图象如图,若一元二次方程有实数根,则 的最大值为(UTYYY)AB3CD96(2012泰安)二次函数的图象如图,则一次函数的图象经过()7(2012泰安)设A,B,C是抛物线上的三点,则,的大小关系为()ABCD8(2012乐山)二次函数y=ax2+bx+1(a0)的图象的顶点在第一象限,且过点(1,0)设t=a+b+1,则t值的变化范围是()A0t1B0t2C1t2D1t19(2012衢州)已知二次函数y=x27x+,若自变量x分别取x1,x2,x3,且0x1x2x3,则对应的函数值y1,y2,y3的大小关系正确的是()Ay1y2y3By1y2y3Cy2y3y1Dy2y3y110(2012义乌市)如图,已知抛物线y1=2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2例如:当x=1时,y1=0,y2=4,y1y2,此时M=0下列判断:当x0时,y1y2; 当x0时,x值越大,M值越小;使得M大于2的x值不存在; 使得M=1的x值是或其中正确的是()ABCD11(2012杭州)已知抛物线y=k(x+1)(x)与x轴交于点A,B,与y轴交于点C,则能使ABC为等腰三角形的抛物线的条数是()A2B3C4D512(2012扬州)将抛物线yx21先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)-2 B.y=(x+2)+2 C.y=(x-2)+2 D.y=(x-2)-213(2012资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c0的解集是()A. -1x5 C.x5 D. x514(2012德阳)在同一平面直角坐标系内,将函数y=2x2+4x+1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(-1,1) B.(1,-2) C.(2,-2) D.(1,-1)15(2012德阳)设二次函数y=x2+bx+c,当x1时,总有y0,当1x3时,总有y0,那么c的取值范围是()A.c=3 B.c3 C.1c3 D.x316(2012兰州)抛物线y2x21的对称轴是()A.直线x= B.直线x= - C.y轴 D. 直线x=217(2012张家界)当a0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A BCD18(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线有下列命题:直线y=0是抛物线y=x2的切线直线x=2与抛物线y=x2 相切于点(2,1)直线y=x+b与抛物线y=x2相切,则相切于点(2,1)若直线y=kx2与抛物线y=x2 相切,则实数k=其中正确命题的是()A BC D19(2012潜江)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有()A.3个 B.2个 C.1个 D.0二.填空题1(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是 m。2(2012扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,那么DE长的最小值是13(2012无锡)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为。4(2012广安)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为5(2012苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x1)2+1的图象上,若x1x21,则y1y2(填“”、“”或“=”)6(2012深圳)二次函数的最小值是 三.解答题1.(2012临沂26)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过点AO、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由2.(2012菏泽21)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90,得到ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是ABO面积4倍?若存在,请求出P的坐标;若不存在,请说明理由(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并写出四边形PBAB的两条性质3. (2012义乌市24)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?4.(2012杭州22)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x1)的图象交于点A(1,k)和点B(1,k)(1)当k=2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值5.(2012烟台26)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4)以A为顶点的抛物线y=ax2+bx+c过点C动点P从点A出发,沿线段AB向点B运动同时动点Q从点C出发,沿线段CD向点D运动点P,Q的运动速度均为每秒1个单位运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值6.(2012益阳20)已知:如图,抛物线y=a(x1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618)请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果可保留根号)7.(2012广州24)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式8. (2012铜仁25)如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线上有一点P,使ABO与ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由9.(2012泰安29)如图,半径为2的C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0)若抛物线过A、B两点(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得PBO=POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,MAB的面积为S,求S的最大(小)值10. (2012乐山26)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标11.(2012衢州24)如图,把两个全等的RtAOB和RtCOD分别置于平面直角坐标系中,使直角边OB、OD在x轴上已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F抛物线y=ax2+bx+c经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由(3)若AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),AOB在平移过程中与COD重叠部分面积记为S试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由12. (2012绍兴25)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线经过A,B两点。(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒。当PQAC时,求t的值;13. (2012扬州27)已知抛物线yax2bxc经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由14.(2012上海24)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,ADE=90,tanDAE=,EFOD,垂足为F(1)求这个二次函数的解析式;(21世纪教育网版权所有)(2)求线段EF、OF的长(用含t的代数式表示);(3)当ECA=OAC时,求t的值15. (2012广东22)如图,抛物线y=x2x9与x轴交于A、B两点,与y轴交于点C,连接BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)16. (2012嘉兴24)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内)连接 OP,过点0作OP的垂线交抛物线于另一点Q连接PQ,交y轴于点M作PA丄x轴于点A,QB丄x轴于点B设点P的横坐标为m(1)如图1,当m=时,求线段OP的长和tanPOM的值;在y轴上找一点C,使OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E用含m的代数式表示点Q的坐标;求证:四边形ODME是矩形17. (2012贵州安顺26)如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0(1)求抛物线的解析式(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动移动开始后第t秒时,设PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由18. (2012资阳25)抛物线的顶点在直线y=x+3上,过点F(2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MAx轴于点A,NBx轴于点B(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PAPB=,求点M的坐标2011全国各地中考数学试题分类汇编二次函数专辑:一、选择题1. (2011山东滨州,7,3分)抛物线可以由抛物线平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位2. (2011广东广州市,5,3分)下列函数中,当x0时y值随x值增大而减小的是( )Ay = x2 By = x C y = xDy = 3. (2011湖北鄂州,15,3分)已知函数,则使y=k成立的x值恰好有三个,则k的值为( )A0B1C2D3第6题图4. (2011山东德州6,3分)已知函数(其中)的图象如下面右图所示,则函数的图象可能正确的是( )yx11O(A)yx1-1O(B)yx-1-1O(C)1-1xyO(D)5. (2011山东菏泽,8,3分)如图为抛物线的图像,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是 ( ) Aab=1 B ab=1 C b2a D ac0 B b0 C c0 D abc0xy-11O111. (2011甘肃兰州,5,4分)抛物线的顶点坐标是A(1,0)B(1,0)C(2,1)D(2,1)12. (2011甘肃兰州,9,4分)如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2)c1;(3)2ab0;(4)a+b+c0。你认为其中错误的有A2个B3个C4个D1个13. (2011江苏宿迁,8,3分)已知二次函数yax2bxc(a0)的图象如图,则下列结论中正确的是( )Aa0 B当x1时,y随x的增大而增大Cc0 D3是方程ax2bxc0的一个根14. (2011山东济宁,8,3分)已知二次函数中,其函数与自变量之间的部分对应值如下表所示:x01234y41014点A(,)、B(,)在函数的图象上,则当时,与的大小关系正确的是A B C D 15. (2011山东聊城,9,3分)下列四个函数图象中,当xl Cl Dl18. (2011上海,4,4分)抛物线y(x2)23的顶点坐标是( )(A) (2,3); (B) (2,3); (C) (2,3); (D) (2,3) 19. (2011四川乐山5,3分)将抛物线向左平移2个单位后,得到的抛物线的解析式是 A B C D20. (2011四川凉山州,12,4分)二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是( )第12题OxyOyxAOyxBOyxDOyxC21. (2011安徽芜湖,10,4分)二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( ).22. (2011江苏无锡,9,3分)下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( )Ay = (x 2)2 + 1 By = (x + 2)2 + 1 (第10题)xyACy = (x 2)2 3 Dy = (x + 2)2 323. (2011江苏无锡,10,3分)如图,抛物线y = x2 + 1与双曲线y = 的交点A的横坐标是1,则关于x的不等式 + x2 + 1 1 Bx 1 C0 x 1 D1 x 0,0 B. 0,0 C.0 D.0,0时,y随x的增大而减小.这个函数解析式为_(写出一个即可)9( 2011重庆江津, 18,4分)将抛物线y=x22x向上平移3个单位,再向右平移4个单位等到的抛物线是_.10. (2011江苏淮安,14,3分)抛物线y=x2-2x-3的顶点坐标是 . 11. (2011贵州贵阳,14,4分)写出一个开口向下的二次函数的表达式_ 12. (2011广东茂名,15,3分)给出下列命题:命题1点(1,1)是双曲线与抛物线的一个交点命题2点(1,2)是双曲线与抛物线的一个交 点命题3点(1,3)是双曲线与抛物线的一个交点请你观察上面的命题,猜想出命题(是正整数): 三、解答题yx11o第25题图-1-11. (2011广东东莞,15,6分)已知抛物线与x轴有交点 (1)求c的取值范围;(2)试确定直线ycx+l经过的象限,并说明理由2. ( 2011重庆江津, 25,10分)已知双曲线与抛物线y=zx2+bx+c交于A(2,3)、B(m,2)、c(3,n)三点.A(2,3)yx11o第25题图-1-1B(2,3)C(-2,-3) (1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A、点B、点C,并求出ABC的面积,3. (2011湖南怀化,22,10分)已知:关于x的方程(1) 当a取何值时,二次函数的对称轴是x=-2;(2) 求证:a取任何实数时,方程总有实数根.4(2011四川绵阳24,12)已知抛物线:y=x-2x+m-1 与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求证是ABC是等腰直角三角形;(3)将此抛物线向下平移4个单位后,得到抛物线C,且与x 轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C上求点P,使得EFP是以EF为直角边的直角三角形. 5. (2011贵州贵阳,21,10分)如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(1)求m的值;(3分)(2)求点B的坐标;(3分) (3)该二次函数图象上有一点D(x,y)(其中x0,y0),使SABD=SABC,求点D的坐标(4分)(第21题图)6. (2011广东省,15,6分)已知抛物线与x轴有交点 (1)求c的取值范围;(2)试确定直线ycx+l经过的象限,并说明理由7. (2011广东肇庆,25,10分)已知抛物线(0)与轴交于、两点(1)求证:抛物线的对称轴在轴的左侧;(2)若(是坐标原点),求抛物线的解析式;(3)设抛物线与轴交于点,若D是直角三角形,求D的面积8. (2011江苏盐城,23,10分)已知二次函数y = - x2 - x + .(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y 0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式9. (2011贵州安顺,27,12分)如图,抛物线y=x2+bx2与x轴交于A、B两点,与y轴交于C点,且A(一1,0)求抛物线的解析式及顶点D的坐标;判断ABC的形状,证明你的结论;点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值10 (2010湖北孝感,25,2分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m0.(1)求点E、F的坐标(用含m的式子表示);(5分)(2)连接OA,若OAF是等腰三角形,求m的值;(4分)OCBA(3)如图(2),设抛物线y=a(xm6)2+h经过A、E两点,其顶点为M,连接AM,若OAM=90,求a、h、m的值. (5分)11. (2011湖南湘潭市,25,10分)(本题满分10分)如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). 求抛物线的解析式; 在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.12(2011湖北荆州,22,9分)(本题满分9分)如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴是,B(4,2),一次函数的图象平分它的面积,关于x的函数的图象与坐标轴只有两个交点,求m的值.第22题图2010全国各地中考数学试题分类汇编二次函数专辑:一:选择题:1(2010年安徽省芜湖市)二次函数yax2bxc的图象如图所示,反比例函数y 与正比例函数y(bc)x在同一坐标系中的大致图象可能是( )A B C DyxO(第10题)2(2010年浙江台州市)如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为( ) A3 B1 C5 D8 3.(2010年浙江省金华). 已知抛物线的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A. 最小值 3 B. 最大值3 C. 最小值2 D. 最大值24(2010江苏泰州,5,3分)下列函数中,y随x增大而增大的是( )A. B. C. D. 5. (2010年兰州市)二次函数的图像的顶点坐标是 A(-1,8) B(1,8) C(-1,2) D(1,-4)6. (2010年兰州市)抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b、c的值为y(第15题图)Ox13 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=27. (2010年山东省济南市)在平面直角坐标系中,抛物线与轴的交点的个数是( )A3B2C1D08.(2010年台湾省)坐标平面上有一函数y=24x2-48的图形,其顶点坐标为何? (A) (0,-2) (B) (1,-24) (C) (0,-48) (D) (2,48)9. (2010年台湾省)坐标平面上,若移动二次函数y=2(x-175)(x-176)+6的图形,使其与x轴交于两点,且此两点的距离为1单位,则移动方式可为下列哪一种? (A) 向上移动3单位 (B) 向下移动3单位 (C) 向上移勤6单位 (D) 向下移动6单位10(2010年北京崇文区) 函数y=x2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y1成立的x的取值范围是( )A B C Dy(第15题图)Ox13二:填空题:1.(2010年浙江省金华15)若二次函数的部分图象如图所示,则关于x的一元二次方程的一个解,另一个解 ;2.(2010年日照市)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c0的解集是 .3.(2010年兰州市)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.三:解答题:1.(2010年浙江省金华)(本题8分)已知二次函数y=ax2bx3的图象经过点A(2,3),B(1,0) (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移 个单位 2(2010年安徽省芜湖市)(本小题满分8分)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积xyDACOP3.(2010江西)如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m0)个单位,所得抛物线与x轴交与C、D两点,与原抛物线交与点P.(1)求点A的坐标,并判断PCA存在时它的形状(不要求说理)(2)在x轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;(3)CDP的面积为S,求S关于m的关系式。4.(2010年广东省广州市)已知抛物线yx22x2(1)该抛物线的对称轴是 ,顶点坐标 ;(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;xy(3) 若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足(4) x1x21,试比较y1与y2的大小5.(2010年四川省眉山)如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上(1)求抛物线对应的函数关系式;(2)若DCE是由ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N设点M的横坐标为t,MN的长度为l求l与t之间的函数关系式,并求l取最大值时,点M的坐标6.(2010年宁德市)(本题满分12分)如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线交于A、D两点。直接写出A、C两点坐标和直线AD的解析式;如图2,质地均匀的正四面体骰子的各个面上依次标有数字1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?yx0D(5,-2)CBA图1图2-137.(2010年宁德市)(本题满分13分)如图,在梯形ABCD中,ADBC,B90,BC6,AD3,DCB30.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边EFG设E点移动距离为x(x0).EFG的边长是_(用含有x的代数式表示),当x2时,点G的位置在_;若EFG与梯形ABCD重叠部分面积是y,求B E F CA DG当0x2时,y与x之间的函数关系式;当2x6时,y与x之间的函数关系式;探求中得到的函数y在x取含何值时,存在最大值,并求出最大值.8.(2010年浙江省东阳市.10分)如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,ABE部分贴B型墙纸,其余部分贴C型墙纸。A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元。探究1:如果木板边长为2米,FC1米,则一块木板用墙纸的费用需 元;探究2:如果木板边长为1米,求一块木板需用墙纸的最省费用;探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时?墙纸费用最省;如要用这样的多块木板贴一堵墙(73平方米)进行装饰,要求每块木板A型的墙纸不超过1平方米,且尽量不浪费材料,则需要这样的木板 块。9.(2010年四川省眉山市)如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上(1)求抛物线对应的函数关系式;(2)若DCE是由ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N设点M的横坐标为t,MN的长度为l求l与t之间的函数关系式,并求l取最大值时,点M的坐标10. (2010重庆市潼南县)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.11.(2010年日照市)如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米 已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米(1)求出点A的坐标及直线OA的解析式;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点 (本题满分10分)12.(2010年湖北黄冈市)(11分)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程平均速度时间);(3)如图b,直线xt(0t135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系. 图a图b 13. (2010年安徽中考)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。九(1)班数学建模兴趣小组根据调查,整理出第天(且为整数)的捕捞与销售的相关信息如下:在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第天的收入(元)与(天)之间的函数关系式?(当天收入日销售额日捕捞成本)试说明中的函数随的变化情况,并指出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论