




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、图像分割概述图像分割一般采用的方法有边缘检测(edge detection)、边界跟踪(edge tracing)、区域生长(region growing)、区域分离和聚合等。图像分割算法一般基于图像灰度值的不连续性或其相似性。不连续性是基于图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测、边界跟踪等算法。相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割、区域生长等。二、边缘检测图像的边缘点是指图像中周围像素灰度有阶跃变化或屋顶变化的那些像素点,即灰度值导数较大或极大的地方。边缘检测可以大幅度的减少数据量,并且剔除不相关信息,保留图像重要的结构属性。边缘检测基本步骤:平滑滤波、锐化滤波、边缘判定、边缘连接。说明:垂直于边缘的走向,像素值变化比较明显,可能呈现阶跃状,也可能呈现屋顶状。因此,边缘可以分为两种:一种为阶跃性边缘,它两边的像素灰度值有着明显的不同;另一种为屋顶状边缘,它位于灰度值从增加到减少的变化转折点。对于阶跃性边缘,二阶方向导数在边缘处呈现零交叉;对于屋顶状边缘,二阶方向导数在边缘处取极值。三、边缘检测算法: 基于一阶导数:Roberts算子、Sobel算子、Prewitt算子 基于二阶导数:高斯-拉普拉斯边缘检测算子 Canny边缘检测算法四、matlab实现1)基于梯度算子(一阶导数)的边缘检测BW=edge(I,type,thresh,direction,nothinning)thresh是敏感度阈值参数,任何灰度值低于此阈值的边缘将不会被检测到。默认值为空矩阵,此时算法自动计算阈值。direction指定了我们感兴趣的边缘方向,edge函数将只检测direction中指定方向的边缘,其合法值如下:可选参数nothinning,指定时可以通过跳过边缘细化算法来加快算法运行的速度。默认是thinning,即进行边缘细化。2)基于高斯-拉普拉斯算子(三阶导数)的边缘检测BW=edge(I,log,thresh,sigma)sigma指定生成高斯滤波器所使用的标准差。默认时,标准差为2。滤镜大小n*n,n的计算方法为:n=ceil(sigma*3)*2+1。3)基于Canny算子的边缘检测BW=edge(I,canny,thresh,sigma)thresh是敏感度阈值参数,默认值为空矩阵。此处为一列向量,为算法指定阈值的上下限。第一个元素为阈值下限,第二个元素为阈值上限。如果只指定一个阈值元素,则默认此元素为阈值上限,其0.4倍的值作为阈值下限。如阈值参数没有指定,则算法自行确定敏感度阈值上下限。代码:H=imread(sunflower.jpeg);b1=rgb2gray(H);h58=fspecial(gaussia,5,0.8);%高斯滤波器b=imfilter(b1,h58);bw1=edge(b,sobel);%sobel算子bw2=edge(b,prewitt);%prewitt算子bw3=edge(b,roberts);%roberts算子bw4=edge(b,log); %log算子bw5=edge(b,canny);%canny算子figure;imshow(bw1);imwrite(bw1,bwsobel.jpg);figure;imshow(bw2);imwrite(bw2,bwprewitt.jpg);figure;imshow(bw3);imwrite(bw3,bwroberts.jpg);figure;imshow(bw4);imwrite(bw4,bwlog.jpg);figure;imshow(bw5);imwrite(bw5,bwcanny.jpg);结果:五、总结分析1、边缘定位精度方面: Roberts算子和Log算子定位精度较高。Roberts算子简单直观,Log算子利用二阶导数零交叉特性检测边缘。但Log算子只能获得边缘位置信息,不能得到边缘方向信息。2、边缘方向的敏感性: Sobel算子、Prewitt算子检测斜向阶跃边缘效果较好,Roberts算子检测水平和垂直边缘效果较好。Log算子不具有边缘方向检测功能。Sobel算子能提供最精确的边缘方向估计。3、去噪能力: Roberts算子和Log算子虽然定位精度高,但受噪声影响大。 Sobel算子和Prewitt算子模板相对较大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 栀子炒焦炮制技术
- 离婚财产分割协议中遗产继承补充条款
- 夫妻双方共同债务承担及房产过户补充协议范本
- 《个性化定制离婚协议模板:财产分割与子女监护》
- 高新技术企业员工待岗及薪酬保障协议
- 竞业限制及保密协议范本:离职员工竞业限制细则
- 离职员工竞业限制协议及违约责任认定范本
- 高端设备研发成果保密及技术转移合同模板
- 绿色环保住宅小区物业服务合同履行环境质量担保书
- 精美的古风课件
- 监狱警察心理健康讲座
- 设计后续服务管理办法
- 政府单位消防培训课件
- 培训部门介绍
- 2025至2030中国预测性维护行业项目调研及市场前景预测评估报告
- 全国省市电子表格
- 施工工地用水管理制度
- 电脑组装教学课件
- 乌饭叶干燥色素萃取及应用特性的多维度探究
- 统编版语文四年级上册-2024-2025学年习作:小小动物园课件
- 口腔门诊药品管理制度
评论
0/150
提交评论