




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题十一 一元二次方程实根的分布讨论本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。一一元二次方程实根的基本分布零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。 一元二次方程()的两个实数根为、,则 、均为正0,0,0; 、均为负0,0,0;、一正一负0。例1关于的一元二次方程有两个负数根,求实数取值范围。解:设两个实数根为、,依题意有 由得:,恒成立。 由得:0,解之,。 由得:0,解之,7。 综上,的取值范围是7。 例2若0,关于的方程有两个相等的正实数根,求的值。 解:设两个实数根为、,依题意有 由得:,或。 若,则0,不符合,舍去。 故,此时均符合、, 。二一元二次方程实根的非零分布分布设一元二次方程()的两实根为、,且,为常数。则一元二次方程实根的分布指、相对于的关系,例如、均比大,或者、均比小,或者、一个比大,一个比小等等。、均比常数大0,()()0,()()0;、均比常数小0,()()0,()()0;、一个比大,一个比小0,()()0。例3若方程的两根均大于1,求实数的取值范围。解:设两个实数根为、,由韦达定理得:,。依题意有由得:,解之,或。由得:2,解之,1。由得:,解之,1。综上,的取值范围是。当所考查的根的分布不仅仅限于正负性时,比如两个实数根都介于2与4之间(不包括2和4),或者两根中一根介于0与1之间,另一个根介于3与4之间,这时用根的判别式及韦达定理解决问题就相当复杂。那么比较朴素的方法就是直接去求出方程的根,但是这一方法有两个弊端:第一,带有参数的方程求根是个较复杂的过程,且涉及较深的不等式解法:第二,抽象数量运算较多,缺乏直观性。这时借助于二次函数图像,就比较直观且容易理解。我们知道,如果二次函数的图像与轴有交点,那么交点的横坐标即为二次方程的实数根。反之亦然。利用这一点来看问题1:什么条件下,二次方程两个实数根、一个比大,另一个比小(是给定的常数)? 上面问题等价于:什么条件下,二次函数图像与轴两个交点分布在点两侧?利用图像说明(简单起见,只画横轴,不画纵轴)。tx2x1tx2x1 显然,当时,; 当时,。问题2:什么条件下,二次方程两个实数根、都比常数大?构造二次函数,结合图形,tx2x1tx2x1 当时,0,;当时,0,。问题3:什么条件下,二次方程两个实数根、都比常数小?构造二次函数,结合图形,tx1x2x1tx2当时,0,;当时,0,。 问题4:什么条件下,二次方程两个实数根、满足,(其中、为给定常数且)?构造二次函数,结合图形,x2tsx1tsx2x1 当时,;当时,。 问题5:什么条件下,二次方程两个实数根、均介于、之间(其中、为给定常数且)? 构造二次函数,结合图形,tstsx1x2x1x2 当时,0,;当时,0,。 看几个具体事例。 例4:为实数,关于的二次方程有两个实数根分别介于0与1之间以及1与2之间,求的取值范围。 解:构造二次函数,结合图形,有,201 解之,故取值范围是。 例5:已知为整数,且方程两根都大于且小于,求值。解:显然,。构造二次函数,则其图像与轴两个交点均介于、之间(不包括两个端点)。如图,则有 (,0)(,0)由得:,由得:,解之得 ,由得:,解之得 。故的取值范围是。所以可取的整数值为。 例6:若、为整数,方程的两个实数根都大于且小于,求与的值。 解:构造二次函数,则其图像与轴的两个交点均在与之间(不包括两个端点)。如图,则有 (1,0)(0,0)由得:, , 由得:,由得:, ,由得:。显然, , , 可取的值有。当时, ,符合;当时, ,不符合;当时, ,均不符合;当时, ,均不符合;当时, ,均不符合。故本题的解为,。 例7:方程的所有实根介于与之间(不包括、),求的值。 简析:本题与上述问题的最大区别在于针对二次项系数要进行分类讨论。解:当时,符合题意。 当时,令,首先,解之,。其次,抛物线的对称轴应介于直线与直线之间,有,即, 由此可知,解得 。由于抛物线开口向上,故有52 综合、可得或者。例8:关于的方程有三个实数根分别为、,其中根与无关。(1)如,求实数的值;(2)如,试比较:与的大小,并说明理由。 简析:问题(1)的关键是将原方程降次。问题(2)的关键是由条件式联想到一元二次方程实根的分布。 解:将原方程变形: 或可知,方程的两个实数根是、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南株洲茶陵县总工会工人文化宫建设项目专业技术人员招聘考前自测高频考点模拟试题及答案详解(网校专用)
- 2025河北保定市定兴县国有公司领导人员招聘2人考前自测高频考点模拟试题及答案详解(有一套)
- 2025年专用X射线机项目建议书
- 2025湖北恩施来凤县星熠文化科技有限责任公司招聘财务人员的考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025辽宁能源控股集团所属能源投资集团拟聘人员模拟试卷完整参考答案详解
- 2025年南平武夷山市公安局公开招聘铁骑女性警务辅助人员6人模拟试卷完整答案详解
- 2025昆明市盘龙职业高级中学烹饪教师招聘(1人)模拟试卷附答案详解(典型题)
- 2025年船用推进电机项目建议书
- 2025年黄骅市市级机关公开遴选考试真题
- 2025北京化工大学化办公室(中心)招聘1人模拟试卷及答案详解(典优)
- 护士职业素养课件下载
- 2025年重庆文化旅游集团有限公司招聘笔试参考题库含答案解析
- 北京中医药大学宣讲
- 行政责任伦理重构-洞察及研究
- 养老护理员工作流程
- 摩托车智能化技术分析-洞察阐释
- 古籍版本智能鉴定-洞察阐释
- 公共组织绩效评估-形考任务一(占10%)-国开(ZJ)-参考资料
- 2025春江苏开放大学大学英语(B)(1)060051过程性考核作业3参考答案
- 《2025年CSCO HR阳性晚期乳腺癌治疗指南》解读
- 企业决策支持系统-项目案例分析
评论
0/150
提交评论