




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
练习1、椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率.()求椭圆的方程;()求的平分线所在的直线的方程;()在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由. 解()椭圆的方程为(过程略);()直线的方程为(过程略); ()法1(联立方程)假设在椭圆上存在关于直线对称的相异两点,设线段的中点为.因为直线与直线垂直,所以设直线的方程为:,由此得将其代入椭圆方程得,.因为是此方程的两个根,所以,所以.又点在直线上,所以,所以点的坐标为.又点在直线上,所以,解得,所以点的坐标为,因为点的坐标满足椭圆方程,所以点在椭圆上,不在椭圆内,故不存在这样的两点. 另解:将代入得,因方程有两个相等实根,两点重合这与假设矛盾,故不存在这样的两点. 法2(点差法)假设在椭圆上存在关于直线对称的相异两点,设线段的中点为.因为两点在椭圆上,故有,两式相减得,.又为线段的中点,则有,所以.因为直线与直线垂直,所以,所以,所以.又点在直线上,所以. 解得点的坐标为,因为点的坐标满足椭圆方程,所以点在椭圆上,不在椭圆内,故不存在这样的两点. 点评 本题第三问是一道探究椭圆上是否存在关于已知直线对称的相异两点的存在性探索题,既可用方程思想求解也可用点差法解答,因为答案是不存在,所以最后的关键是找出矛盾,这个矛盾既可以是假设相异的两点重合,也可以是线段的中点在椭圆上,不在椭圆内. 2 已知椭圆中心在原点,焦点在轴上,一个顶点的坐标为,且其右焦点到直线的距离为.(1)求椭圆的方程;(2)是否存在斜率为的直线,使与已知曲线交于不同的两点,且有.若存在,求的取值范围;若不存,请说明理由. 解 (1)求得(过程略); (2)法1(联立方程)设直线的方程为,将其代入椭圆方程得.设,则方程的两个根,故.因点在直线上,所以.又点在椭圆内,所以有,即,化简得. 又,所以,即,化简得.由消去得,又,所以的取值范围是. 法2(点差法)假设存在这样的直线,设点为线段的中点,设,则,因为点在椭圆上,所以,两式相减得,即,所以,即.又,所以,则.由得,所以, 又因为点在椭圆内,所以有,即,解得,又, 所以的取值范围是. 3、试确定实数的取值范围,使抛物线上存在两点关于直线对称. 法1(联立方程)因为设为抛物线上关于对称的两个点,设线段的中点为. 又直线与直线垂直,故可设直线的方程为,将其代入得.因为是该方程的两个根,故.又点在直线上,所以,又因为点在抛物线内,所以即,也就是,又恒成立,所以. 法2(点差法)显然,设为抛物线上关于对称的两个点,设线段的中点为.则,又直线与直线垂直,所以,即.下同法1略. 4、已知椭圆的左焦点为,为坐标原点.(1)求过点,并且与椭圆的左准线相切的圆的方程;(2)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围. 解(1)略;(2)法1(联立方程)设,设为线段的中点,设过左焦点且不与坐标轴垂直的直线的方程为,将其代入椭圆方程整理得,.因为是方程的两个根,所以.又点在直线上,所以,故点的坐标为.又,所以,故直线的点斜式方程为.令得,又,所以,故点的横坐标的取值范围是. 法2(点差法)设,则有,两式相减得,.又设为线段的中点,则有,所以.因为,所以,即,所以线段的垂直平分线的点斜式方程为,令得点的横向坐标为.又,所以,即,又所以即,故点的横坐标的取值范围是. 评注 本题因直线过左焦点,线段的中点必在椭圆内,故需另寻它法求范围.法1用函数值域求范围,法2用不等式求范围. 综上可知,解决圆锥曲线上两点关于直线对称问题,要充分利用“垂直”与“中点”这两个条件,“联立方程”和“点差法”只是将这两个几何条件代数化的一种途径,“主动设点(设弦端点坐标、设弦中点坐标)设线(设直线方程)、引入多元设而不求”是解决这类问题的基本方法和必由之路。问题解决既要有整体思想又要有目标意识和对多元的驾驭能力,对学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工中期监理方案
- 临汾市一模文科数学试卷
- 六安市教师招聘数学试卷
- 智算中心运维自动化与监控系统方案
- 聋第五册数学试卷
- 青岛版初二下册数学试卷
- 六年级测试试卷数学试卷
- 鲁山6年级数学试卷
- 2025年小学诗词大会初赛试题及答案
- 隆阳区初一数学试卷
- 甘12J8 屋面标准图集
- 购买设备合同
- 特种设备安全管理-使用知识
- H35-462(5G中级)认证考试题库(附答案)
- HY/T 122-2009海洋倾倒区选划技术导则
- GB/T 19666-2019阻燃和耐火电线电缆或光缆通则
- GA/T 1241-2015法庭科学四甲基联苯胺显现血手印技术规范
- 小学和初中科学教学衔接
- 《循证医学》治疗性研究证据的评价和应用
- 制造执行系统的功能与实践最新ppt课件(完整版)
- 人工智能遥感解译介绍课件
评论
0/150
提交评论