




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学总复习高中数学必修1集合函数附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、零次幂底数不能为零;4、对数的真数大于零;5、指数函数和对数函数的底数大于零且不等于1;6、三角函数正切函数中;余切函数中;7、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法。三、函数的值域的常用求法:1、换元法;2、不等式法;3、单调性法;4、直接法四、函数的最值的常用求法: 先判断函数的单调性,再求最值。5、 函数单调性的常用结论: 1、单调性的定义:用于证明函数的单调性;或判定函数的单调性 2、若均为某区间上的增(减)函数,则在这个区间上也 为增(减)函数3、若为增(减)函数,则为减(增)函数4、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。5、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。六、函数奇偶性的常用结论:1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。表1指数函数对数数函数定义域值域图象性质过定点过定点减函数增函数减函数增函数表2幂函数奇函数偶函数第一象限性质减函数增函数过定点高中数学必修2一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。高中数学必修42、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角第一象限角的集合为第二象限角的集合为第三象限角的集合为第四象限角的集合为终边在轴上的角的集合为终边在轴上的角的集合为终边在坐标轴上的角的集合为3、与角终边相同的角的集合为4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域5、长度等于半径长的弧所对的圆心角叫做弧度6、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是7、弧度制与角度制的换算公式:,8、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,9、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正Pvx y A O M T 11、三角函数线:,12、同角三角函数的基本关系:;13、三角函数的诱导公式:,口诀:函数名称不变,符号看象限,口诀:正弦与余弦互换,符号看象限14、函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象函数的性质:振幅:;周期:;频率:;相位:;初相:函数,当时,取得最小值为 ;当时,取得最大值为,则,15、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴16、向量:既有大小,又有方向的量数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度零向量:长度为的向量单位向量:长度等于个单位的向量平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式: 运算性质:交换律:;结合律:;坐标运算:设,则18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则19、向量数乘运算:实数与向量的积是一个向量的运算叫做向量的数乘,记作;当时,的方向与的方向相同;当时,的方向与的方向相反;当时,运算律:;坐标运算:设,则20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,其中,则当且仅当时,向量、共线21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使(不共线的向量、作为这一平面内所有向量的一组基底)22、定比分点坐标公式:设点是线段上的一点,、的坐标分别是,当时,点的坐标是23、平面向量的数量积:零向量与任一向量的数量积为性质:设和都是非零向量,则当与同向时,;当与反向时,;或运算律:;坐标运算:设两个非零向量,则若,则,或设,则设、都是非零向量,是与的夹角,则24、两角和与差的正弦、余弦和正切公式:;();()25、二倍角的正弦、余弦和正切公式:(,)26、,其中高中数学必修51、正弦定理:在中,、分别为角、的对边,为的外接圆的半径,则有2、正弦定理的变形公式:,;,;3、三角形面积公式:4、余弦定理:在中,有,5、余弦定理的推论:,6、设、是的角、的对边,则:若,则;若,则;若,则7、数列:按照一定顺序排列着的一列数8、数列的项:数列中的每一个数9、有穷数列:项数有限的数列10、无穷数列:项数无限的数列11、递增数列:从第2项起,每一项都不小于它的前一项的数列12、递减数列:从第2项起,每一项都不大于它的前一项的数列13、常数列:各项相等的数列14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列15、数列的通项公式:表示数列的第项与序号之间的关系的公式16、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差18、由三个数,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项若,则称为与的等差中项19、若等差数列的首项是,公差是,则20、通项公式的变形:;21、若是等差数列,且(、),则;若是等差数列,且(、),则22、等差数列的前项和的公式:;23、等差数列的前项和的性质:若项数为,则,且,若项数为,则,且,(其中,)24、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比25、在与中间插入一个数,使,成等比数列,则称为与的等比中项若,则称为与的等比中项26、若等比数列的首项是,公比是,则27、通项公式的变形:;28、若是等比数列,且(、),则;若是等比数列,且(、),则29、等比数列的前项和的公式:30、等比数列的前项和的性质:若项数为,则,成等比数列数列常考的三大题型:已知,求利用已知,求已知递推公式求其详细解法见课堂笔记31、;32、不等式的性质: ;,;33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是的不等式34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式二次函数的图象一元二次方程的根有两个相异实数根 有两个相等实数根没有实数根一元二次不等式的解集35、二元一次不等式:含有两个未知数,并且未知数的次数是的不等式36、二元一次不等式组:由几个二元一次不等式组成的不等式组37、二元一次不等式(组)的解集:满足二元一次不等式组的和的取值构成有序数对,所有这样的有序数对构成的集合38、在平面直角坐标系中,已知直线,坐标平面内的点若,则点在直线的上方若,则点在直线的下方39、在平面直角坐标系中,已知直线若,则表示直线上方的区域;表示直线下方的区域若,则表示直线下方的区域;表示直线上方的区域40、线性约束条件:由,的不等式(或方程)组成的不等式组,是,的线性约束条件目标函数:欲达到最大值或最小值所涉及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江西吉安市青原区两山发展集团有限公司部分岗位任职要求调整笔试模拟及1套完整答案详解
- 《三级医院评审标准(2025年版)》要点解读及培训
- 教师招聘之《小学教师招聘》模拟卷包附完整答案详解(网校专用)
- 2023年呼伦贝尔农垦谢尔塔拉特泥河哈达图浩特陶海农牧场招聘172人笔试历年难、易错考点及答案详解(必刷)
- 2025年教育游戏化在小学英语阅读教学中的应用与教学设计
- 2025年物流与供应链行业智能制造发展趋势研究
- 2025年环境影响评价公众参与机制在环境教育创新中的应用报告
- 合并2型糖尿病的激素依赖型乳腺癌:临床特征、预后及潜在机制探究
- 公司委托代理服务合同3篇
- 基于2025年的基层医疗卫生服务体系改革与基层医疗机构服务能力评价体系研究
- T-CNAS 10-2020 成人有创机械通气气道内吸引技术操作
- 《危险货物港口作业重大事故隐患判定标准》知识培训
- 农村废弃物综合利用资源化利用方式与路径
- 脑卒中的识别及预防与处理
- 和田玉知识培训课件下载
- 交互式游戏设计趋势-深度研究
- 2025年中国海洋功能性食品行业全景评估及投资规划建议报告
- 2025-2030年中国铷行业市场规模分析及投资前景研究报告
- 餐饮行业培训合作协议书
- 沪价费(2006)27号-关于调整本市部分绿化行政事业性收费标准的通知
- 水稻机械化种植技术-洞察分析
评论
0/150
提交评论