




已阅读5页,还剩208页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
保险精算学ActuarialScience 单位 广东医人文管理院主讲教师 曾理斌联系方式 andrewzeng2008 引言 了解精算 精算学与精算师 什么是精算 是精确计算 精算 依据经济学的基本原理 运用现代的各种科学有效方法 对各种经济活动中未来的风险进行分析 评估和管理 是实现现代保险 金融 投资稳健经营的一种数学计算技术 保险精算 保险公司稳健经营的灵魂与核心 保险精算 精算部门的日常工作包括哪些内容 比较高级的精算职位要履行哪些职责 对精算从业人员的技术和职业道德要求有哪些 一 某公司招聘广告中对精算助理的要求 岗位职责 1 根据市场 销售部门提出的开发新险种的需求 设计符合市场及公司发展需要的产品 2 责任准备金的评估及计提 3 公司未来的现金流分析及利润预测 4 分析公司发生的各项管理费用的合理性 5 核算公司代理人体系的成本 进行成本效益分析 6 公司的利源分析 资产负债匹配分析 7 根据保监会的规定编制各种精算月报 季报 年报 8 各种发生率的经验分析 保险条款的订立与修正 资格条件 1 精算专业 本科及以上学历 2 2年以上寿险精算相关工作经验 3 具备金融 财务 投资 保险 软件开发 法律等多方面的知识 4 具有较强的逻辑思维能力和综合分析能力 5 具有较强的组织协调能力和学习能力 良好的团队协作精神及沟通能力 6 熟练使用电脑及各种办公软件 具备一定的计算机编程能力 较高的英语水平 7 能够承受并有效管理工作压力 能够适应出差 8 有外资或合资保险公司同类岗位1年以上工作经验者优先 9 通过多门北美或英国体系精算师资格考试者为佳 二 精算人员的职能 1 保险产品的创新和定价 2 保险产品的适销性分析和利润分析 3 保险产品的价值演示及保全作业服务 4 对各类影响利润因素所作的经验分析 5 准备为各类目的而需要的责任准备金及精算报告 6 现金流动分析和参与资产负债管理 7 参与投资结构及其策略的研讨和制定 8 参与财务报表主要部分的准备 9 定期准备各类报告和报表 向决策层提供详实可靠数据和最新信息 10 准备和计算保单红利 11 涉足公司内部信息化的推动及其他金融风险的管理 三 中国精算人员的使命 1 提高自身精算技术 正确理解精算职能 有效解决实质问题 2 浓缩精算学习课程 3 推动国内保险界与国外同行的技术交流 4 教育和引导国内业界正确理解精算的意义和作用 扩大精算技术在保险公司及其监管部门的运作范围 5 不断提高个人素质 使自己成为一个比较全面的金融人才 更好地担起风险管理的职责 环境因素 法律 社会 人口 经济 税收等 利源分析 风险分析 产品设计 定价 负债评估 资产评估 资产负债管理 偿付能力管理 检测和分析经验数据 精算师在干什么 四 精算人员所应具备的素质 由三个部分组成 一是知识结构二是能力构成三是人格品质这三大方面 缺少任何一项都不能成为一名优秀的精算人员 五 精算师发展前景 跨越金领人生 精算师 一个充满着希望和具有很强生命力的职业 据来自英国金融机构最新的统计资料表明 精算师已迅速成为金融领域中最有吸引力的职业之一 而美国最佳职业排行榜中 精算师在1998年高居第一位 1999年排在第二位 精算师 一个应用平台越来越广阔的职业 不仅在保险公司的产品管理 财务管理等传统保险领域 而且包括在投资 资产管理 社会保障等方面 相应地也会享有更大的权利和承担更大的责任 精算师职业资格考试 精算师职业资格的获取一是考试认可制度 以北美精算师协会和英国精算师协会的考试最为典型 二是学历认可制度 通常在大学设立精算专业 类似于准精算师和精算师水平 分本科和研究生两个阶段 精算专业研究生毕业 即可获得精算师资格 国内举行的精算师考试 中国精算师 英国精算师 日本精算师 北美精算师前者是我国 保险法 唯一承认有签署我国寿险公司精算报考资格的精算师 后三者共同构成了保险精算师资格的三大支柱 在国际保险界享有极高的声望 教材 指定教材Kellison S G TheoryofInterest 2ndEdition SOA 1991 Bowers N L ActuarialMathematics 2ndEdition SOA 1997 参考资料王晓军等 保险精算学 中国人民大学出版社 1995 课程结构 基础利息理论基础生命表基础核心保费计算责任准备金计算多重损失模型保单的现金价值与红利 拓展特殊年金与保险寿险定价与负债评估偿付能力与监管 学好本课程需要做的准备 心态准备 积极 好学 持之以恒工具准备 完整的一本作业本计算器 学生专用型 上课准备 课前 课中 课后 独立自主的完成所布置作业 型号 CASIOfx 82ES团购单价 35元 台 第一章 利息理论基础 利息理论要点 利息的度量利息问题求解的原则年金收益率分期偿还表与偿债基金 第一节 利息的度量 第一节汉英名词对照 积累值现实值实质利率单利复利名义利率贴现率利息效力 AccumulatedvaluePresentvalueEffectiveannualrateSimpleinterestCompoundinterestNominalinterestDiscountrateForceofinterest 一 利息 Interest 的定义 1 定义 利息产生在资金的所有者和使用者不统一的场合 它的实质是资金的使用者付给资金所有者的租金 用以补偿所有者在资金租借期内不能支配该笔资金而蒙受的损失 2 影响利息大小的三要素 本金 Principal 利率 Interestrate 度量期 包括年 季 月 日 小时 分钟 秒等等 利率通常是指年利率 时期长度 计息周期 Measureperiod 举例说明 利率的度量期与计息周期 1 1 二 积累函数与贴现函数 1 积累函数 AccumulationFunction 2 贴现函数 DiscountFunction 特别的有 0 t 3 金额函数 Amountfunction 4 第N期利息 0 t K 1 单利率 Simpleinterestrate 和复利率 Compoundinterestrate 2 实质利率 Effectiverateofinterest 和实质贴现率 Effectiverateofdiscount 3 名义利率 Nominalrateofinterest 和名义贴现率 Nominalrateofdiscount 4 利息 效 力 Forceofinterest 三 利率的种类 1 单利单利率单贴现率 2 复利复利率 习惯上的利率 复贴现率 1 单利和复利 假设时间t内利率相同 1 单利率考虑投资一单位本金 如果其在t时刻的积累值为则该笔投资以每期利率计息 并将这样产生的利息成为单利 称为单利率 单利 本金生利 利不生利 1 单利和复利 假设时间t内利率相同 2 复利率如果其在t时刻的积累值为则该笔投资以每期利率计息 并将这样产生的利息成为复利 称为复利率 复利 本利都生利 利滚利 3 单利 复利的贴现函数单利的贴现函数复利的贴现函数 4 单贴现率累积函数与贴现函数单贴现率的累积函数单贴现率的贴现函数 5 复贴现率累积函数与贴现函数复贴现率的累积函数复贴现率的贴现函数 3 思考 利息的产生是连续还是跳跃的 若每期利率不同呢 如何表示积累函数 1 实质利率 某一度量期的实质利率 是指该度量期内得到的利息金额与此度量期开始时投入的本金金额之比 通常用表示 则第期的利率为 2 实 质 际 利率和实 质 际 贴现率 同样有 第1期的实质利率为 2 实质贴现率 一个度量期的实质贴现率为该度量期内取得的利息金额与期末投资可回收金额之比 通常用字母表示 则第n期的利率为 同样有 第1期的实质贴现率为 3 利率与贴现率之间的等关系等价 相同的本金经过相同的计息周期产生相同的累积值 4 单 复 利计息与实质利率之间关系单利的实质利率逐期递减 复利的实质利率保持恒定 单贴现的实质利率逐期递增 复贴现的实质利率保持恒定 如何证明 证明 线形积累单利与实质单利单贴现与实质单贴现 指数积累复利与实质复利复贴现与实质复贴现 5 计息优劣的选取时 相同单复利场合 单利计息比复利计息产生更大的积累值 所以短期业务一般单利计息 时 相同单复利场合 复利计息比单利计息产生更大的积累值 所以长期业务一般复利计息 对于贴现率呢 分单贴现和复贴现情况 例1 1实质利率 贴现率 某人存1000元进入银行 第1年末存款余额为1020元 第2年存款余额为1050元 求分别等于多少 例1 1答案 例1 2 某人存5000元进入银行 若银行分别以2 的单利计息 复利计息 单贴现计息 复贴现计息 问此人第5年末分别能得到多少积累值 例1 2答案 3 名义 年 利率和名义 年 贴现率 1 名义利率名义利率 是指每个度量期支付利息一次 而在每个度量期的实质利率为 名义利率与实质年利率的关系为 2 名义贴现率名义贴现率 是指每个度量期支付利息一次 而在每个度量期的实贴现率为 名义贴现率与实质 年 贴现率的关系为 例1 3 1 确定500元以季度转换8 年利率投资5年的积累值 2 如以6 年利 按半年为期预付及转换 到第6年末支付1000元 求其现时值 3 确定季度转换的名义利率 使其等于月度转换6 名义贴现率 例1 3答案 1 2 3 4 利息效力 1 定义 瞬间时刻利率强度 2 等价公式一般公式恒定利息效力场合 例1 4 确定1000元按如下利息效力投资10年的积累值1 2 例1 4答案 四 变利息 什么是变利息 常见的变利息情况连续变化场合 函数利息力离散变化场合 例1 5 1 如果 试确定1在n年末的积累值 2 如果实质利率在头5年为5 随之5年为4 5 最后5年为4 试确定1000元在15年末的积累值 3 假定一笔资金头3年以半年度转换年利率6 计息 随之2年以季度转换8 的年贴现率计息 若5年后积累值为1000元 问这笔资金初始投资额应该为多少 例1 5答案 第二节 利息问题求解原则 一 利息问题求解四要素 原始投资本金投资时期长度利率及计息方式期初 期末计息 利率 贴现率积累方式 单利计息 复利计息利息转换时期 实质利率 名义利率 利息效力本金在投资期末的积累值 或现值 二 利息问题求解原则 本质 任何一个有关利息问题的求解本质都是对四要素知三求一的问题工具 现金流图方法 建立现金流分析方程 求值方程 原则 在任意时间参照点 求值方程等号两边现时值相等 0 现金流时间坐标 例1 6 求本金 某人为了能在第7年末得到1万元款项 他愿意在第一年末付出1千元 第3年末付出4千元 第8年末付出X元 如果以6 的年利率复利计息 问X 例1 6答案 以第7年末为时间参照点 有以第8年末为时间参照点 有以其他时刻为时间参照点 同学们自己练习 例1 7 求利率 1 某人现在投资4000元 3年后积累到5700元 问季度计息的名义利率等于多少 2 某人现在投资3000元 2年后再投资6000元 这两笔钱在4年末积累到15000元 问实质利率 例1 7答案 1 2 例1 8 求时间 假定分别为12 6 2 问在这三种不同的利率场合复利计息 本金翻倍分别需要几年 例1 8精确答案 例1 9近似答案 ruleof72 例1 10 求积累值 某人现在投资1000元 第3年末再投资2000元 第5年末再投资2000元 其中前4年以半年度转换名义利率5 复利计息 后三年以恒定利息力3 计息 问到第7年末此人可获得多少积累值 例1 10答案 本节复习题 一项投资从香港回归日 即1997 7 1 开始 到建国六十周年纪念日终止 即2009 10 1 问一共投资了多少天 按某一利率以以下两种付款形式的现值相等 1 第五年末付200元加上第十年末500元 2 第五年末付400 94元 现以同样的利率投资300元 并在8年末取出200元 余下在第十年末积累金额为X 求X 投资1000元在第15年末的积累值为3000元 试确定每月计息一次的年名义利率 某人签了一张1年期的借据并从银行收到950元 在第六个月末 他付款300元 假设为单贴现 问他在年末还应付款给银行多少钱 某基金以利息强度计息 在t 0时的100元存款将积累到250元 求K 第三节 年金 第三节汉英名词对照 年金支付期延付年金初付年金永久年金变额年金递增年金递减年金 AnnuityPaymentperiodAnnuity immediateAnnuity dueperpetuityVaryingannuityIncreasingannuityDecreasingannuity 一 年金的定义与分类 定义按一定的时间间隔支付的一系列付款称为年金 原始含义是限于一年支付一次的付款 现已推广到任意间隔长度的系列付款 分类基本年金等时间间隔付款付款频率与利息转换频率一致每次付款金额恒定一般年金不满足基本年金三个约束条件的年金即为一般年金 二 基本年金 基本年金等时间间隔付款付款频率与利息转换频率一致每次付款金额恒定分类付款时刻不同 初付年金 延付年金付款期限不同 有限年金 永久年金 基本年金图示 0123 nn 1n 2 111 100 111 1000 11 111 111 111 延付永久年金 初付永久年金 延付年金 初付年金 基本年金公式推导 例1 11 一项年金在20年内每半年末付500元 设利率为每半年转换9 求此项年金的现时值 例1 12 某人以月度转换名义利率5 58 从银行贷款30万元 计划在15年里每月末等额偿还 问 1 他每月等额还款额等于多少 2 假如他想在第五年末提前还完贷款 问除了该月等额还款额之外他还需一次性付给银行多少钱 例1 12答案 1 2 例1 13 假定现在起立即开始每6个月付款200直到满4年 随后再每6个月付款100直到从现在起满10年 若求这些付款的现时值 例1 13答案 方法一 方法二 例1 14 有一企业想在一学校设立一永久奖学金 假如每年发出5万元奖金 问在年实质利率为20 的情况下 该奖学金基金的本金至少为多少 例1 15 永久年金 A留下一笔100000元的遗产 这笔财产头10年的利息付给受益人B 第2个10年的利息付给受益人C 此后的利息都付给慈善机构D 若此项财产的年实质利率为7 试确定B C D在此笔财产中各占多少份额 例1 15答案 基本年金公式总结 未知时间问题 年金问题四要素年金 利率 支付时期 次数 积累值 现时值 关注最后一次付款问题在最后一次正规付款之后 下一个付款期做一次较小付款 droppayment 在最后一次正规付款的同时做一次附加付款 balloonpayment 例1 16 有一笔1000元的投资用于每年年底付100元 时间尽可能长 如果这笔基金的年实质利率为5 试确定可以作多少次正规付款以及确定较小付款的金额 其中假定较小付款是 1 在最后一次正规付款的日期支付 2 在最后一次正规付款以后一年支付 3 按精算公式 在最后一次付款后的一年中间支付 精算时刻 例1 16答案 变利率年金问题 类型一 时期利率 第K个时期利率为 变利率年金问题 类型二 付款利率 第K次付款的年金始终以利率计息 例1 17 某人每年年初存进银行1000元 前4年的年利率为6 后6年由于通货膨胀率 年利率升到10 计算第10年年末时存款的积累值 例1 17答案 例1 18 某人每年年初存进银行1000元 前4次存款的年利率为6 后6次付款的年利率升到10 计算第10年年末时存款的积累值 例1 18答案 三 一般年金 一般年金利率在支付期发生变化付款频率与利息转换频率不一致每次付款金额不恒定分类支付频率不同于计息频率的年金支付频率小于计息频率的年金支付频率大于计息频率的年金变额年金 支付频率不同于计息频率年金 分类支付频率小于利息转换频率支付频率大于利息转换频率方法通过名义利率转换 求出与支付频率相同的实质利率 年金的代数分析 支付频率小于计息频率年金 0 k 2k nk 计息 支付 1 1 1 例1 19 某人每年年初在银行存款2000元 假如每季度计息一次的年名义利率为12 计算5年后该储户的存款积累值 例1 19答案 方法一 利率转换法方法二 年金转换法 例1 20 永久年金 有一永久年金每隔k年末付款1元 问在年实质利率为i的情况下 该永久年金的现时值 支付频率大于利息转换频率 支付频率大于 0 第m次每次支付 第2m次每次支付 第nm次每次支付 计息 支付 1 2 n 年金分析方法 方法一 利率转换法 年金转换法 例1 21 某购房贷款8万元 每月初还款一次 分10年还清 每次等额偿还 贷款年利率为10 98 计算每次还款额 例1 21答案 方法一 方法二 例1 22 永久年金 一笔年金为每6个月付1元 一直不断付下去 且第一笔付款为立即支付 问欲使该年金的现时值为10元 问年度实质利率应为多少 例1 22答案 年金关系 一般年金代数公式 连续年金 定义 付款频率无穷大的年金叫连续年金 公式 恒定利息效力场合 例1 23 确定利息效力使 变额年金 等差年金递增年金递减年金等比年金 等差年金 一般形式现时值积累值 0 1 2 n P P Q P n 1 Q 特殊等差年金 例1 24 从首次付款1开始 以后每次付款递增1 只增加到M 然后保持付款额不变的N年期期末付年金 可以表示成计算 例1 24答案 例1 25 有一项延付年金 其付款额从1开始每年增加1直至n 然后每年减少1直至1 试求其现时值 例1 25答案 等比年金 0 1 2 n 1 1 k 例1 26 某期末付永久年金首付款额为5000元 以后每期付款额是前一期的1 05倍 当利率为0 08时 计算该永久年金的现时值 例1 26答案 第四节 收益率 第四节中英文单词对照 贴现资金流收益率再投资率时间加权利率币值加权利率 DiscountedcashflowyieldrateReinvestmentrateTime weightedratesofinterestDollar weightedratesofinterest 贴现资金流分析 例1 27 现金流动表按利率投资返回的净现时值 不同利率水平下的净现时值 收益率的概念 使得投资返回净现时值等于零时的利率称为收益率 也称为 内返回率 用线形插值法求得上例中收益率为22 65 收益率投资方希望收益率越高越好 借贷方希望收益率越低越好 收益率的唯一性 例1 28 某人立即付款100元 并在第2年末付132元 以换回第1年末返回230元 求这笔业务的收益率 解答 收益率的唯一性 由于收益率是高次方程的解 所以它的值很可能不是唯一的 Descartes符号定理收益率的最大重数小于等于资金流的符号改变次数 收益率唯一性的判定定理二整个投资期间未动用投资余额始终为正 未动用投资余额 收益率唯一性判别 D氏符号判别 例1 27 例1 28 再投资率 本金的再投资问题例1 29 有两个投资方案可供我们选择A方案 实质利率为10 为期5年B方案 实质利率为8 为期10年我们应该选择哪项投资 例1 29资金积累过程 例1 29答案 如果A五年后的再投资率 6 036 选择A 否则选择B 利息的再投资问题 一 例1 30 某人一次性投资10万元进基金A 该基金每年年末按7 的年实质利率返还利息 假如利息可按5 实质利率再投资 问10年后这10万元的积累金额等于多少 0 1 2 10 例1 30的积累过程 利息再投资帐户 基金帐户 例1 31答案 利息的再投资问题 二 例1 32 例1 31续 假如此人在10年期内每年年初都投资1万元进基金A 本金按7 年实质利率计息 而利息可按5 实质利率再投资 那么第10年末该这10万本金的积累金额又等于多少 0 1 2 10 例1 32的积累过程 基金帐户 利息再投资帐户 基金收益率计算 基本符号A 初始资金B 期末资金I 投资期内利息Ct t时期的净投入 可正可负 C 在b时刻投资1元 经过a时期的积累 产生的利息 币值加权方法 时间加权方法 原理 基本公式 例1 32 某投资基金1月1日 投资100000元5月1日 该笔资金额增加到112000元 并再投资30000元11月1日 该笔资金额降低为125000元 并抽回投资42000元 次年1月1日 该资金总额为100000元 请分别用币值加权的方法和时间加权的方法计算这一年该投资基金的年收益率 例1 32答案 币值加权和时间加权的比较 都是计算单位时期投资收益率的方法币值加权方法重点考察的是整个初始本金经过一个单位时期综合投资之后的实质受益率 时间加权方法得到的是在这种市场条件下能达到的理论收益率 它可以作为考察投资正确与否的某个指标 第五节 债务偿还 第五节中英文单词对照 分期偿还方法分期偿还表偿债基金偿债基金表 AmortizationmethodAmortizationscheduleSinkingfundSinkingfundschedule 债务偿还方式 满期偿还 指借款者在贷款期满时一次性偿还贷款的本息 分期偿还 借款人在贷款期内 按一定的时间间隔 分期偿还贷款的本金和利息 偿债基金 借款人每期向贷款人支付贷款利息 并且按期另存一笔款项 建立一个基金 在贷款期满时这一基金恰好等于贷款本金 一次偿付给贷款者 分期偿还 常见分期偿还类型等额分期偿还不等额分期偿还递增分期偿还递减分期偿还 分期偿还五要素时期每次还款额每次偿还利息每次偿还本金未偿还贷款余额 分期偿还计划 贷款余额按贷款利率计算的分期偿还款项的现值 也称为时刻0的贷款余额 两种等价的计算贷款余额方法 过去法未来法 借款人现金流出 0 1 2 n P P P t P 时间 借款人现金流入 L 过去法 在K时刻的贷款余额 刚刚偿还P后 按过去法计算 应该为贷款额L按利率i的积累值与每期偿还额为P的每期偿还款利率i的积累值之差 未来法 在K时的贷款余额应该为未来n k次偿还款 按利率i折现到k时的现值 在时刻0 有 如何选择选择利用过去法和未来法来计算贷款余额 选择过去法 不知尚需还款次数或不知最后一次可能的不规则还款额 选择未来法 已知每次还款额和尚未还款次数 例1 33 已知某住房贷款100 000元 分10年还清 每月末还款一次 每年计息12次的年名义利率为6 计算还款50次后的贷款余额 分别利用过去法和未来法 例1 33答案 例1 34 若借款人每年末还款1000元 共20次 在第5次还款时 他决定把手头多余的2000元也作为偿还款 然后将剩余贷款期调整为12年 若利率为9 试计算调整后每年的还款额 例1 34答案 显然利用未来法比较方便 例1 35 某年轻借款人预计10年后工资会大幅上涨 他决定在前10年每年末还款8000元 而后5年每年末还款20000元 年利率为8 计算 分期偿还表 分期还款的每期还款中 包括本金和利息 划分每次偿款中的本金和利息具有重要的作用 如银行缴纳营业税是基于贷款业务中的利息收入 而非整个贷款或整个还款额 分期偿还表 等额贷款为例 例1 35 某借款人每月末还款一次 每次等额还款3171 52元 共分15年还清贷款 每年计息12次的年名义利率为5 04 计算 1 第12次还款中本金部分和利息部分各为多少 2 若此人在第18次还款后一次性偿还剩余贷款 问他需要一次性偿还多少钱 前18次共偿还了多少利息 例1 35答案 偿债基金 借款人每期向贷款人支付贷款利息 并且按期另存一笔款项 建立一个基金 在贷款期满时这一基金恰好等于贷款本金 一次偿付给贷款者 常见偿债基金类型等额偿债基金不等额偿债基金 偿债基金六要素时期每期偿还利息每次存入偿债基金金额每期偿债基金所得利息偿债基金积累额未偿还贷款余额 偿债基金是一种特殊形式的分期偿还 若贷款额为1 年利率为i 贷款期限为n 按偿债基金法偿还贷款 则每期支付贷款利息为i 设各期存入偿债基金的款项为D 偿债基金存款利率也为i 则有 按分期偿还法每期偿款款为 偿债基金法偿还贷款 当贷款利息为i 偿债基金存款利率i时 偿债基金法等价于分期偿还法 偿债基金法常用的公式 设 L为贷款额 N为贷款期限 i为贷款利率 J为偿债基金存款利率 D为每期存入偿债基金的款项 P为每期借款人的总支出 利息部分 存入基金部分 在实务中 一般为 i j 根据偿债基金法的基本原理 第K次利息支付及向基金存款后的贷款净余额为 第k期内的净利息支出为第k期内支出的贷款利息与偿债基金所得利息之差 记为 第k期内净本金支付定义为第k期末偿债基金与第K期初偿债基金额之差 记为 偿债基金表 贷款利率i 偿债基金利率j 贷款1元 例1 36 A曾借款1万元 实质利率为10 A积累一笔实质利率为8 的偿债基金一偿还这笔贷款 在第10年末偿债基金余额为5000元 在第11年末A支付总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国企服务部面试题目及答案
- 2025年新能源汽车自动驾驶政策法规适应性研究报告
- 高校国家资助合同模板(3篇)
- 高铁站设计施工合同模板(3篇)
- 高清合同模板(3篇)
- 安徽辅警笔试题库及答案
- 爱心女孩心理测试题及答案
- 网络游戏合同终止及虚拟物品处理补充协议
- 航空航天项目单项目技术保密合同
- 体育机构运动员职业规划与权益保障合同范本
- 吉林:用水定额(DB22-T 389-2019)
- 威士忌餐吧策划书3
- 大宗商品贸易管理制度
- 《应用语文(第三版)》课件 第三单元 特殊情境口语交际
- 果农电商合同协议
- 武汉网约车从业资格证考试题库及答案
- DB1411T 65-2024 旱垣地高粱田间测产操作规程
- 数码印花操作培训课件
- GB/T 44808.2-2024人类工效学无障碍设计第2部分:考虑颜色视觉随年龄变化的颜色组合方法
- 七年级上册人教版历史知识点总结
- GB/T 30137-2024电能质量电压暂升、电压暂降与短时中断
评论
0/150
提交评论