




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教案内容集备记录高三数学基础回归备考资料-不等式教学目标: 1、知识与技能:(1)在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;(2)掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式。2、过程与方法: (1)通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;(2)通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 3、情感态度价值观:通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识教学重难点1、教学重点:不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式2、教学难点:能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题授课类型:复习课教学时数:3课时 教学步骤:第一课时1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,则;若,则。如(1)对于实数中,给出下列命题:;,则。其中正确的命题是_(答:);(2)已知,则的取值范围是_();(3)已知,且则的取值范围是_()(4) “”是“且”的 A. 必要不充分条件 B. 充分不必要条件 C. 充分必要条件 D. 既不充分也不必要条件 (答:A) 2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设,比较的大小(答:当时,(时取等号);当时,(时取等号);(2)设,试比较的大小();(3)比较1+与的大小(答:当或时,1+;当时,1+;当时,1+)3利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。注意均值不等式的一些变形,如.如(1)下列命题中正确的是A、的最小值是2 B、的最小值是2 C、的最大值是 D、的最小值是(答:C);(2)若,则的最小值是_(答:);(3)正数满足,则的最小值为_(答:); 4.常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、cR,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。如(1)如果正数、满足,则的取值范围是_() (2) 设x,y满足约束条件 , 若目标函数z=ax+by(a0,b0)的值是最大值为12,则的最小值为( ). A. B. C. D. 4 (答:A) (3) 函数y =的值域为 (答: 1, +) )(4)设x0, y0, x2+=1,则的最大值为 (答:) 5、证明不等式的方法:证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点比较法的一般步骤是:比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论.常用的放缩技巧有: 如(1)已知,求证: ;(2) 已知,求证:;(3)已知,且,求证:;(4)若a、b、c是不全相等的正数,求证:;(5)已知,求证:;(6)若,求证:;(7)已知,求证:;(8)求证:。 (9) 己知都是正数,且成等比数列,求证:证明:成等比数列,都是正数, 归纳小结:1. 不等式的性质2. 不等式大小比较的常用方法3. 证明不等式的方法布置作业:高考总复习指导专题四第28页29页基础强化:110板书设计:课 题一、知识点回顾: 二、例题分析1.不等式的性质2.不等式大小比较的常用方法3.常用不等式4.证明不等式的方法 第二课时6.简单的一元高次不等式的解法:解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化在解不等式中,换元法和图解法是常用的技巧之一通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现的符号变化规律,写出不等式的解集。如(1)解不等式。(答:或);(2)不等式的解集是_(答:或);(3)设函数、的定义域都是R,且的解集为,的解集为,则不等式的解集为_(答:);(4)要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,则实数的取值范围是_.(答:)7.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如(1)解不等式(答:);(2)关于的不等式的解集为,则关于的不等式的解集为_(答:). 8.绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):如解不等式(答:);(2)利用绝对值的定义;(3)数形结合;如解不等式(答:)(4)两边平方:如若不等式对恒成立,则实数的取值范围为_。(答:) 9.含绝对值不等式的性质:同号或有;异号或有.如设,实数满足,求证:10、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”注意解完之后要写上:“综上,原不等式的解集是”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)解关于x的不等式原不等式的解集情况为:当时,解为;当时,无解;当时,解为;当m=时,解为;当时,解为或(2)若,则的取值范围是_(答:或);(3)解不等式(答:时,;时,或;时,或) (4)设不等式x22ax+a+20的解集为M,如果M1,4,求实数a的取值范围?解:(1)M1,4有两种情况:其一是M=,此时0;其二是M,此时=0或0,分三种情况计算a的取值范围。设f(x)=x2 2ax+a+2,有=(2a)24(a+2)=4(a2a2)当0时,1a2,M=1,4;当=0时,a=1或2;当a=1时M=11,4;当a=2时,m=21,4。当0时,a1或a2。设方程f(x)=0的两根x1,x2,且x1x2,那么M=x1,x2,M1,41x1x24,即,解得2a,M1,4时,a的取值范围是(1,).提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于的不等式 的解集为,则不等式的解集为_(答:(1,2)归纳小结:掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式。布置作业:高考总复习指导专题四第30页31页能力提高:14板书设计:课 题一、知识点回顾: 二、例题分析1.简单的一元高次不等式的解法 2. 分式不等式的解法3. 含参不等式的解法第三课时11.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上如(1)设实数满足,当时,的取值范围是_(答:);(2)不等式对一切实数恒成立,求实数的取值范围_(答:);(3)若不等式对满足的所有都成立,则的取值范围_(答:(,);(4)若不等式对于任意正整数恒成立,则实数的取值范围是_(答:);(5)若不等式对的所有实数都成立,求的取值范围.(答:)2). 能成立问题若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的.如已知不等式在实数集上的解集不是空集,求实数的取值范围_(答:)3). 恰成立问题若不等式在区间上恰成立, 则等价于不等式的解集为;若不等式在区间上恰成立, 则等价于不等式的解集为.12.不等式应用题: 不等式应用问题体现了一定的综合性这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。(1):要制造一个无盖的盒子,形状为长方体,底宽为2m。现有制盒材料60m2,当盒子的长、高各为多少时,盒子的体积最大?(参看人教A版必修116复习参考题B组第7题) (2): 今有一台坏天平,两臂长不等,其余均精确,有人说要用它称物体的重量只需将物体放在左右托盘各称一次,则两次称量结果的和的一半就是物体的真实重量,这种说法对吗?并说明你的结论解:不对设左、右臂长分别是 ,物体放在左、右托盘称得重量分别为真实重量为为G,则由杠杆平衡原理有: , 得G2=, G=由于故 ,由平均值不等式 知说法不对(一)选择题1、下列命题中正确的是(B)(A) ac2bc2 ab(B) ab a3b3(C) a + cb + d (D) loga2logb20 0ab12、如果关于x的不等式ax2 + bx + c0的解集是(mn0的解集是(A)(A) (B) (D) 3、若x0)的焦点F的直线与抛物线相交于A、B两点,自A、B向准线作垂线,垂足分别为A/、B/。则A/FB/ = _。 解: 设A、B两点的坐标分别为(x1,y1)、(x2,y2),则A/(,y1)、B/(,y2)。 kA/FkB/F = , 又 y1y2 = p2 , kA/FkB/F = 1, A/FB/ = 900 .(三)解答题10、两定点的坐标分别为A(1,0),B(2,0),动点满足条件MBA = 2MAB,求动点M的轨迹方程。 (注意限制条件)解:设MBA = a ,MAB = b (a 0,b 0),点M的坐标为(x,y)。a = 2b ,tana = tan2b = . 当点M在x轴上方时,tana = ,tanb = ,所以 = ,即3x2y2 = 3。当点M在x轴下方时,tana = ,tanb = ,仍可得上面方程。又a = 2b ,| AM | BM | .因此点M一定在线段AB垂直平分线的右侧,所求的轨迹方程为双曲线3x2y2 = 3的右支,且不包括x轴上的点。11、设关于的不等式的解集为,已知,求实数的取值范围。解:; 时,时,。时, 。归纳小结:不等式的恒成立,能成立,恰成立等问题布置作业:高考总复习指导专题四第31页33页实战演练:1,2,3,4,5(1),7,9板书设计:课 题一、知识点回顾: 二、例题分析1.不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神经系统护理常规试题(附答案)
- 2025安徽高级档案职称冲刺模拟试题及答案
- 国民经济核算练习试题参考答案
- 2025款豪华车型赠与协议书样本及详细解读
- 2025年生态型别墅土建工程及无障碍设施安装服务合同
- 2025年高品质住宅采光井施工及改造一体化服务合同
- 2025年校园噪音治理及环境噪声防护服务合同
- 2025-2030年商业街临街铺面租赁合同
- 2025医疗机构聘用护士护理安全风险预防与处理服务合同
- 2025年能源公司员工停薪留职及光伏发电项目投资联合协议
- 安全文明施工措施费支付申请表实用文档
- 杨式85式太极拳现用图解
- 汽车电控发动机构造与维修(第三版)
- YY/T 1095-2015肌电生物反馈仪
- GB/T 328.13-2007建筑防水卷材试验方法第13部分:高分子防水卷材尺寸稳定性
- GB/T 2480-2022普通磨料碳化硅
- 茶叶实践报告3篇
- 细胞生物学实验课件:细胞组分的分级分离
- 胸腔穿刺术thoracentesis课件
- 合理选择影像检查方法课件
- 欣旺集团种禽养殖管理制度手册
评论
0/150
提交评论