




已阅读5页,还剩60页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20132014学年度第一学期 数学 学科教学进度表科目数学教学班级九(3、4)教科书名 及 册 数义务教育新课标上课日期2013.8.26每周节数5总授课节数520=100周次月份星期日期教材内容(第21章 至第25章 )节数一五1八二次根式52九二次根式的乘法3、加减253二次根式的加减1、第21章复习354一元二次方程2、解一元二次方程355解一元二次方程556十实际问题与一元二次方程537第22章复习与检测558图形的旋转3、中心对称259中心对称1、 图案设计1、 第23章复习与检测3510期中考试011十一圆3、与圆有关的位置关系2512与圆有关的位置关系4513正多边形和圆2、弧长和扇形面积3514第24章复习与检测515十二阶段复习与段考5516随机事件与概率5517用列举法求概4、用频率估计概率1518用频率估计概率1、课题学习2,、519元第25章复习与检测520期末复习5备注:根据实际情况,可适当调整期末复习5一、 教材简况:本学期所教九年级数学包括第22章:二次根式;第23章:一元二次方程;第24章:中心对称;第25章:圆;第26章:随机事件的概率。而且本学期要授完下册第二十七章至三十章内容。二、 学生情况:九年级3、4班共有学生109人,学生来自于不同的乡镇,学习层次不同。有应届生,也有补习生,数学成绩整体较好。三、学段目标掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。四、教学重点:二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用五、教学难点:理解旋转的基本性质;二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、六、教学措施:1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。2、教学速度以适应大多学生为主,尽量兼顾后进生,注重整体推进。3、新课教学中涉及到旧知识时,对其作相应的复习回顾。4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。七、课程资源的开发幻灯片 电子白板二次根式导学案学校李家堡初级中学年级九年级学科数学单元一课题二次根式课型新授课备课组 补充授课班级九年级 3、4班主备人张永慧执教人张永慧上课时间2013.8.26审核人刘伟学习目标:(1)理解二次根式的概念(2)理解(a0)是一个非负数,()2=a(a0),=a(a0)(3)掌握(a0,b0),=;=(a0,b0),=(a0,b0)(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减学习重点1二次根式(a0)的内涵(a0)是一个非负数;()2a(a0);=a(a0)及其运用 2二次根式乘除法的规定及其运用 3最简二次根式的概念 4二次根式的加减运算学习难点:1对(a0)是一个非负数的理解;对等式()2a(a0)及=a(a0)的理解及应用 2二次根式的乘法、除法的条件限制 3利用最简二次根式的概念把一个二次根式化成最简二次根式学法指导:1潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点 2培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学教具准备:多媒体课件教学课时:15课时导学流程211 二次根式第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题 教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题 教学过程一、情景导入甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_二、检查预习 (学生活动)请同学们独立完成下列三个问题:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是_三、自主学习 很明显、,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗?20的算术平方根是多少?3当a0)、-、(x0,y0) 例2当x是多少时,在实数范围内有意义?四、当堂训练 教材P练习1、2、3五、拓展提升 例3当x是多少时,+在实数范围内有意义? 例4(1)已知y=+5,求的值(2)若+=0,求a2004+b2004的值六、课堂小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数七、作业布置1教材P8复习巩固1、综合应用5八、课后反思 21.1 二次根式(2)第二课时 教学内容 1(a0)是一个非负数; 2()2=a(a0) 教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 教学重难点关键 1重点:(a0)是一个非负数;()2=a(a0)及其运用 2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0)教学过程一、情景导入通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0)二、检查预习 1什么叫二次根式? 2当a0时,叫什么?当a0时,有意义吗?三、自主学习 议一议:(学生分组讨论,提问解答)(a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数 做一做:根据算术平方根的意义填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 例1 计算 1()2 2(3)2 3()2 4()2 三、当堂训练 计算下列各式的值:()2 ()2 ()2 ()2 (4) 四、拓展提升 例2 计算1()2(x0) 2()2 3()2 4()2 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 五、课堂小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、作业布置 1教材P8 复习巩固2(1)、(2) P9 7七、课后反思 21.1 二次根式(3)第三课时 教学内容 a(a0) 教学目标 理解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题 教学重难点关键 1重点:a(a0) 2难点:探究结论 教学过程一、情景导入讲清a0时,a才成立 一、检查预习 老师口述并板收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 2(a0)是一个非负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、自主学习 (学生活动)填空: =_;=_;=_; =_;=_;=_ 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4)三、当堂训练 教材P7练习2四、拓展提升 例2 填空:当a0时,=_;当aa,则a可以是什么数? 例3当x2,化简-五、课堂小结 本节课应掌握:=a(a0)及其运用,同时理解当a0时,a的六、作业布置1教材P8习题211 3、4、6、8七、课后反思212 二次根式的乘除第一课时 教学内容 (a0,b0),反之=(a0,b0)及其运用 教学目标 理解(a0,b0),=(a0,b0),并利用它们进行计算和化简 由具体数据,发现规律,导出(a0,b0)并运用它进行计算;利用逆向思维,得出=(a0,b0)并运用它进行解题和化简 教学重难点关键 重点:(a0,b0),=(a0,b0)及它们的运用 难点:发现规律,导出(a0,b0) 教学过程一、情景导入要讲清(a0,b、0),反过来=(a0,b0)及利用它们进行计算和化简 教学目标 理解=(a0,b0)和=(a0,b0)及利用它们进行运算 利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简 教学重难点关键 重点:理解=(a0,b0),=(a0,b0)及利用它们进行计算和化简教学过程一、情景导入发现规律,归纳出二次根式的除法规定二、检查预习 (学生活动)请同学们完成下列各题: 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_规律:_;_;_;_ 3利用计算器计算填空: (1)=_,(2)=_,(3)=_,(4)=_ 规律:_;_;_;_。 每组推荐一名学生上台阐述运算结果 (老师点评)三、自主学习 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,对二次根式的除法规定:=(a0,b0),反过来,=(a0,b0) 下面我们利用这个规定来计算和化简一些题目 例1计算:(1) (2) (3) (4) 分析:上面4小题利用=(a0,b0)便可直接得出答案 例2化简: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以达到化简之目的四、当堂训练 教材P14 练习1五、拓展提升 例3已知,且x为偶数,求(1+x)的值六、课堂小结 本节课要掌握=(a0,b0)和=(a0,b0)及其运用七、作业布置 1教材P15 习题212 2、7、8、9八、课后反思 21.2 二次根式的乘除(3)第三课时 教学内容 最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算 教学目标 理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式 重难点关键 1重点:最简二次根式的运用 2难点关键:会判断这个二次根式是否是最简二次根式教学过程一、情景导入通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求二、检查预习 (学生活动)请同学们完成下列各题(请三位同学上台板书) 1计算(1),(2),(3) 老师点评:=,=,= 2现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_ 它们的比是三、自主学习 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1被开方数不含分母; 2被开方数中不含能开得尽方的因数或因式 我们把满足上述两个条件的二次根式,叫做最简二次根式 那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式 学生分组讨论,推荐34个人到黑板上板书老师点评:不是=. 例1(1) ; (2) ; (3) 例2如图,在RtABC中,C=90,AC=2.5cm,BC=6cm,求AB的长四、当堂训练 教材P14 练习2、3五、拓展提升例3观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=-1,=-, 同理可得:=-, 从计算结果中找出规律,并利用这一规律计算 (+)(+1)值六、课堂小结 本节课应掌握:最简二次根式的概念及其运用 六、作业布置 1教材P15 习题212 3、7、102选用课时作业设计3.课后作业:同步训练七、课后反思21.3 二次根式的加减(1)第一课时 教学内容 二次根式的加减 教学目标 理解和掌握二次根式加减的方法 先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简 重难点关键 1重点:二次根式化简为最简根式 2难点关键:会判定是否是最简二次根式教学过程一、情景导入理解和掌握二次根式加减的方法二、检查预习 学生活动:计算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教师点评:上面题目的结果,实际上是我们以前所学的同类项合并同类项合并就是字母不变,系数相加减三、自主学习 学生活动:计算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并 例1计算 (1)+ (2)+ 例2计算 (1)3-9+3 (2)(+)+(-)四、当堂训练 教材P19 练习1、2五、拓展提升 例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值六、课堂小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并七、作业布置1教材P21 习题213 1、2、3、5八、课后反思21.3 二次根式的加减(2)第二课时 教学内容 利用二次根式化简的数学思想解应用题 教学目标 运用二次根式、化简解应用题 通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题 重难点关键 讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点教学过程一、情景导入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固二、检查预习 例2要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、自主学习例1如图所示的RtABC中,B=90,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动问:几秒后PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)四、当堂训练 教材P19 练习3五、拓展提升 例3若最简根式与根式是同类二次根式,求a、b的值(同类二次根式就是被开方数相同的最简二次根式)六、课堂小结 本节课应掌握运用最简二次根式的合并原理解决实际问题七、作业布置1教材P21 习题213 7八、课后反思21.3 二次根式的加减(3)第三课时 教学内容 含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用 教学目标 含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算 重难点关键 重点:二次根式的乘除、乘方等运算规律; 教学过程一、情景导入由整式运算知识迁移到含二次根式的运算二、检查预习 学生活动:请同学们完成下列各题: 1计算 (1)(2x+y)zx (2)(2x2y+3xy2)xy 2计算 (1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老师点评:这些内容是对八年级上册整式运算的再现它主要有(1)单项式单项式;(2)单项式多项式;(3)多项式单项式;(4)完全平方公式;(5)平方差公式的运用三、自主学习 如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立 整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式 例1计算: (1)(+) (2)(4-3)2 例2计算 (1)(+6)(3-) (2)(+)(-)四、当堂训练 课本P20练习1、2五、拓展提升例3已知=2-,其中a、b是实数,且a+b0,化简+,并求值六、课堂小结 本节课应掌握二次根式的乘、除、乘方等运算七、作业布置1教材P21 习题213 1、8、9八、课后反思二次根式复习课教学目标1使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2熟练地进行二次根式的加、减、乘、除混合运算教学重点和难点重点:含二次根式的式子的混合运算难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子教学过程设计一、复习1请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件 指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式2二次根式的乘法及除法的法则是什么?用式子表示出来指出:二次根式的乘、除法则也是在一定条件下成立的把两个二次根式相除,计算结果要把分母有理化3在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:例3三、课堂练习1选择题:Aa2Ba2Ca2Da2Ax+2 B-x-2C-x+2Dx-2A2x B2aC-2xD-2a2填空题:4计算:四、小结1本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握2在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围3运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件4通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题五、作业1x是什么值时,下列各式在实数范围内有意义?2把下列各式化成最简二次根式:第二十二章 一元二次方程221 一元二次方程学校李家堡初级中学年级九年级学科数学单元一课题一元二次方程课型新授课备课组 补充授课班级九年级 3、4班主备人张永慧执教人张永慧上课时间2013.8.26审核人刘伟 单元要点分析 教材内容 1本单元教学的主要内容 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题 2本单元在教材中的地位与作用 一元二次方程是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程应该说,一元二次方程是本书的重点内容 教学目标 1知识与技能 了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题 2过程与方法 (1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型根据数学模型恰如其分地给出一元二次方程的概念 (2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等 (3)通过掌握缺一次项的一元二次方程的解法直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程 (4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0 (5)通过复习八年级上册整式的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它 (6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题 3情感、态度与价值观 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣 教学重点 1一元二次方程及其它有关的概念 2用配方法、公式法、因式分解法降次解一元二次方程 3利用实际问题建立一元二次方程的数学模型,并解决这个问题 教学难点 1一元二次方程配方法解题 2用公式法解一元二次方程时的讨论 3建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别 教学关键 1分析实际问题如何建立一元二次方程的数学模型 2用配方法解一元二次方程的步骤 3解一元二次方程公式法的推导 课时划分 本单元教学时间约需16课时,具体分配如下: 221 一元二次方程 2课时 222 降次解一元二次方程 7课时 223 实际问题与一元二次方程 4课时 教学活动、习题课、小结 3课时第一课时 教学内容 一元二次方程概念及一元二次方程一般式及有关概念 教学目标 了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目 1通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义 2一元二次方程的一般形式及其有关概念 3解决一些概念性的题目 4态度、情感、价值观 4通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情 重难点关键 1重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题 2难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念教学过程一、情景导入问题(1)九章算术“勾股”章有一题:“今有户高多于广六尺八寸, 两隅相去适一丈,问户高、广各几何?”二、检查预习 学生活动:列方程 大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少? 如果假设门的高为x尺,那么,这个门的宽为_尺,根据题意,得_ 整理、化简,得:_问题(2)如图,如果,那么点C叫做线段AB的黄金分割点 如果假设AB=1,AC=x,那么BC=_,根据题意,得:_ 整理得:_ 问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是_,宽是_,根据题意,得:_ 整理,得:_ 老师点评并分析如何建立一元二次方程的数学模型,并整理三、自主学习 学生活动:请口答下面问题 (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式 一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 例1将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项 例2(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项四、当堂训练 教材P32 练习1、2五、拓展提升 例3求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程六、课堂小结(学生总结,老师点评) 本节课要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用七、作业布置 1教材P34 习题221 1、22选用作业设计八、课后反思 221 一元二次方程第二课时 教学内容 1一元二次方程根的概念; 2根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目 教学目标 了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根同时应用以上的几个知识点解决一些具体问题 重难点关键 1重点:判定一个数是否是方程的根; 2难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根教学过程一、情景导入会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题二、检查预习 学生活动:请同学独立完成下列问题问题1如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为_ 整理,得_列表:x012345678 问题2一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少? 设苗圃的宽为xm,则长为_m 根据题意,得_ 整理,得_列表:x01234567891011 老师点评(略)三、自主学习 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其它解吗?问题2呢? 老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解 (3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解 为了与以前所学的一元一次方程等只有一个解的区别,我们称: 一元二次方程的解叫做一元二次方程的根 回过头来看:x2-36=0有两个根,一个是6,另一个是6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解 例1下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4 例2你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0四、当堂训练 教材P33 思考题 练习1、2五、拓展提升 例3要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪? 设长为xcm,则宽为(x-5)cm 列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由(2)完成下表: x1011121314151617x2-5x-150 (3)你知道铁片的长x是多少吗?六、课堂小结(学生归纳,老师点评) 本节课应掌握: (1)一元二次方程根的概念及它与以前的解的相同处与不同处; (2)要会判断一个数是否是一元二次方程的根; (3)要会用一些方法求一元二次方程的根七、作业布置 1教材P34 复习巩固3、4 综合运用5、6、7 拓广探索8、92选用课时作业设计八、课后反思 22.2.1 直接开平方法 教学内容 运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程 教学目标 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题 提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程 重难点关键 1重点:运用开平方法解形如(x+m)2=n(n0)的方程;领会降次转化的数学思想 2难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程教学过程一、情境导入如图,在ABC中,B=90,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后PBQ的面积等于8cm2?二、检查预习 学生活动:请同学们完成下列各题 问题1填空(1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2三、自主学习上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?例1:解方程:x2+4x+4=1例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程我们把这种思想称为“降次转化思想”四、当堂训练 教材P36 练习五、拓展提升 例3某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?六、课堂小结 本节课应掌握: 由应用直接开平方法解形如x2=p(p0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=,达到降次转化之目的七、作业布置 1教材P45 复习巩固1、22选用作业设计:八、课后反思22.2.2 配方法第1课时 教学内容 间接即通过变形运用开平方法降次解方程 教学目标 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题 重难点关键 1重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤 2难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧教学过程一、情景导入通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤二、检查预习 (学生活动)请同学们解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得x=或mx+n=(p0) 如:4x2+16x+16=(2x+4)2三、自主学习 列出下面二个问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面三个方程的解法呢? 问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起” 大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少? 例1按以上的方程完成x2-36x+70=0的解题 例2解下列关于x的方程 (1)x2+2x-35=0 (2)2x2-4x-1=0四、当堂训练 教材P38 讨论改为课堂练习,并说明理由 教材P39 练习1 2(1)、(2)五、拓展提升例3如图,在RtACB中,C=90,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半 六、课堂小结 本节课应掌握: 左边不含有x的完全平方形式,左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 期货从业资格之期货投资分析题库检测题型及答案详解参考
- 2024-2025学年度执法资格复习提分资料含答案详解(突破训练)
- 2024广东省南雄市中考数学考试彩蛋押题含完整答案详解【全优】
- 2025年上半年黑龙江中医药大学附属第四医院招聘工作人员考前自测高频考点模拟试题含答案详解(考试直接用)
- 2025年垃圾焚烧发电与新能源产业融合发展案例分析报告
- 2025石油委托加工合同
- 2025购车签合同模板
- 2025年新能源行业新能源设备检测与认证市场分析报告
- 2025年中国工程机械座椅行业市场全景分析及前景机遇研判报告
- 网络直播平台股东股权调整与收益分成协议
- 2025年第一届安康杯安全生产知识竞赛试题题库及答案(完整版)
- 电力工程冬季施工安全技术措施
- 贵州省贵阳市2026届高三上学期摸底考试数学试卷含答案
- 公司年度员工安全教育培训计划
- 潍坊市2026届高三开学调研监测考试化学试题及答案
- 供电所安全教育培训课件
- 2025年杭州市上城区望江街道办事处 编外人员招聘8人考试参考试题及答案解析
- 极限配合与技术测量基础(第五版)
- 培智四年级美术教案新
- 智能电子储物柜控制系统方案
- 成人高考数学必背知识点
评论
0/150
提交评论