



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十六) 抛物线的简单性质一、基本能力达标1以x轴为对称轴,通径长为8,顶点为坐标原点的抛物线方程是()Ay28xBy28xCy28x或y28x Dx28y或x28y解析:选C依题意设抛物线方程为y22px(p0),则2p8,所以抛物线方程为y28x或y28x.2若直线y2x与抛物线x22py(p0)相交于A,B两点,则|AB|等于()A5p B10pC11p D12p解析:选B将直线方程代入抛物线方程,可得x24pxp20.设A(x1,y1),B(x2,y2),则x1x24p,y1y29p.直线过抛物线的焦点,|AB|y1y2p10p.3O为坐标原点,F为抛物线C:y24x的焦点,P为C上的一点,若|PF|4,则POF的面积为()A2 B2C2 D4解析:选C如图,设点P的坐标为(x0,y0),由|PF|x04,得x03,代入抛物线方程得,y4324,所以|y0|2,所以SPOF|OF|y0|22.4设抛物线y28x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF|()A4 B8C8 D16解析:选B由抛物线的定义得,|PF|PA|,又由直线AF的斜率为,可知PAF60.PAF是等边三角形,|PF|AF|8.5顶点在原点,焦点在x轴上且通径长为6的抛物线方程是_解析:设抛物线的方程为y22ax,则F.|y| |a|.由于通径长为6,即2|a|6,a3.抛物线方程为y26x.答案:y26x6已知AB是抛物线2x2y的焦点弦,若|AB|4,则AB的中点的纵坐标为_解析:设AB的中点为P(x0,y0),分别过A,P,B三点作准线的垂线,垂足分别为A,Q,B.由题意得|AA|BB|AB|4,|PQ|2.又|PQ|y0,所以y02,解得y0.答案:7已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,求抛物线方程及|OM|的值解:设抛物线方程为y22px(p0),则焦点坐标为,准抛物线方程为x.M在抛物线上,M到焦点的距离等于到准线的距离,即 3.解得:p1,y02,抛物线方程为y22x.点M(2,2),根据两点间距离公式有:|OM|2.8已知抛物线C:y22px(p0)过点A(2,4)(1)求抛物线C的方程,并求其准线方程;(2)若点B(0,2),求过点B且与抛物线C有且仅有一个公共点的直线l的方程解:(1)由抛物线C:y22px(p0)过点A(2,4),可得164p,解得p4.所以抛物线C的方程为y28x,其准线方程为x2.(2)当直线l的斜率不存在时,x0符合题意当直线l的斜率为0时,y2符合题意当直线l的斜率存在且不为0时,设直线l的方程为ykx2.由得ky28y160.由6464k0,得k1,故直线l的方程为yx2,即xy20.综上直线l的方程为x0或y2或xy20.二、综合能力提升1过抛物线y24x的焦点,作一条直线与抛物线交于A,B两点,若它们的横坐标之和等于5,则这样的直线()A有且仅有一条 B有两条C有无穷多条 D不存在解析:选B设A(x1,y1),B(x2,y2),由抛物线的定义,知|AB|x1x2p527.又直线AB过焦点且垂直于x轴的直线被抛物线截得的弦长最短,且|AB|min2p4,所以这样的直线有两条故选B.2已知A(2,0),B为抛物线y2x上的一点,则|AB|的最小值为_解析:设点B(x,y),则xy20,所以|AB|.所以当x时,|AB|取得最小值,且|AB|min.答案:3已知抛物线y2x,则弦长为定值1的焦点弦有_条解析:因为通径的长2p为焦点弦长的最小值,所以给定弦长a,若a2p,则焦点弦存在两条;若a2p,则焦点弦存在一条;若a,所以弦长为定值1的焦点弦有2条答案:24已知抛物线的焦点F在x轴上,直线l过F且垂直于x轴,l与抛物线交于A,B两点,O为坐标原点,若OAB的面积等于4,求此抛物线的标准方程解:由题意,可设抛物线方程为y22ax(a0),则焦点F,直线l:x,A,B两点坐标分别为,|AB|2|a|.OAB的面积为4,2|a|4,a2.抛物线方程为y24x.5设点P(x,y)(y0)为平面直角坐标系xOy内的一个动点(其中O为坐标原点),点P到定点M的距离比点P到x轴的距离大.(1)求点P的轨迹方程;(2)若直线l:ykx1与点P的轨迹相交于A,B两点,且|AB|2,求实数k的值解:(1)过点P作x轴的垂线且垂足为点N,则|PN|y,由题意知|PM|PN|, y,化简得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州大方县人民医院专项引进高层次急需紧缺人才考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025年咸阳经济技术开发区管委会招聘?(24人)模拟试卷及答案详解(有一套)
- 2025吉林松原经济技术开发区管理委员会招聘事业单位(含专项招聘高校毕业生)5人模拟试卷附答案详解
- 2025呼伦贝尔莫旗消防救援大队招聘消防文员模拟试卷带答案详解
- 广汽本田凌派讲解课件
- 2025年软泡聚醚项目发展计划
- 2025贵州丹寨县人民检察院招聘聘用制检察辅助人员考前自测高频考点模拟试题及答案详解(名师系列)
- 小学安全办主任培训笔记课件
- 2025年水发集团权属一级公司纪委副书记专项招聘模拟试卷及答案详解(名师系列)
- 2025年超高压复合胶管合作协议书
- 职高课件模板
- 【生物】第四节 激素调节课件-2025-2026学年人教版生物八年级上册
- 卫生院安全生产培训课件
- 医院信息安全保密培训课件
- 物流紧急事件应急预案方案
- 期中专题复习-词汇句型训练-2025-2026学年 译林版2024 英语八年级上册 原卷
- 2025年全国中小学校科普知识竞赛题库(+答案)
- 2.2创新永无止境教学课件 2025-2026学年度九年级上册 道德与法治 统编版
- 幼儿创意玉米课件
- 矿山爆破作业安全培训课件
- 【MOOC期末】《中国马克思主义与当代》(北京科技大学)期末慕课答案
评论
0/150
提交评论