31平行四边形(2).doc_第1页
31平行四边形(2).doc_第2页
31平行四边形(2).doc_第3页
31平行四边形(2).doc_第4页
31平行四边形(2).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学教案 备课组成员:孙军,石志安 ,赵晶,岳娜 主备人:石志安 授课时间: 授课班级: 授课教师:课 题第三章1平行四边形(二)教学目标1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题3.培养学生的推理论证能力和逻辑思维能力教学重点平行四边形对角线互相平分的性质,以及性质的应用教学难点综合运用平行四边形的性质进行有关的论证和计算教学方法启发式,引导式教学方法教具使用 (课件)多媒体教学过程教师活动授课教师调整环节:回顾、导入新内容内容:师:前面我们已经学习过平行四边形的判定,现在我们来回顾一下判定的具体内容。生:平行四边形的判定有4条l 两组对边分别平行的四边形是平行四边形l 两组对边分别相等的四边形是平行四边形l 一组对边平行且相等的四边形是平行四边形l 两条对角线互相平分的四边形是平行四边形师:很好。那有没有同学能够从命题的角度指出到这四条判定的相同和不同之处?生:这4个命题是平行四边形性质的逆命题。生:我们特别关注第一条,它是平行四边形的定义,既是平行四边形的判定,又包含着平行四边形的性质,这是它与其它3条不同的地方。师:大家刚才的发言都非常好,但是大家注意到没有它们都不是我们现在知识体系中的公理?它们的正确性是需要我们证明的。生:原来数学这么严密、只会用是不行的,还必须知道为什么。师:很好的体会,今天我们就来解决这个问题。师:下面请同学们充分发挥你自己的聪明才智和团队的力量,去寻找解决问题的策略,或者找到解决问题路上的“坎儿”。环节:探究、质疑找方法内容:学生自由组合,探索有关平行四边形判定的问题,自由交流、质疑、寻求帮助。生:老师我们发现这种命题没法证明。师:为什么?生:比如说下面这个题:它有已知条件(AD/BC, CDBDBA)吧?师:对。生:它有让我们解决的问题(四边形 ABCD是平行四边形吗)吧?师:对。生:那你说在上面的命题中,哪一个有这些?找不到已知条件还怎么证明阿?师:这一组同学找到了解决问题途中的一个坎儿,看看其他同学又没有好的建议或方法?生:我们认为任何一个命题都由“条件”“结论”两部分构成,比如下面这个命题:l 一组对边平行且相等的四边形是平行四边形中,“一组对边平行且相等”是它的条件,而“四边形是平行四边形”就是我们要解决的问题。我们小组的坎儿是:虽然能够找到“条件和要解决的问题”但是它不象我们以前解决过的问题有图形。师:没有图形对我们解决问题有影响吗?生:当然有。那一组平行且相等的边没有标记,会导致我们没有办法写过程 ,就算我们根据题意自己构造了下面这个四边形,哪一组对边是命题里说的那一组?你知道吗?难道能随便选择一组对边就可以?师:看来上一组同学的问题(找不到已知条件)已经解决了。对于这一小组同学的问题那些同学可以发表一下自己的见解?生:我们也不确定师:那好,每一组同学分成两部分,一部分选择,为“平行且相等的对边”另一组同学选择,为“平行且相等的对边”看看我们能不能完成对l 一组对边平行且相等的四边形是平行四边形这个命题的证明。生:我们选择“,为“平行且相等的对边”这样命题l 一组对边平行且相等的四边形是平行四边形就变成了“四边形中,/且,求证四边形是平行四边形”证明:连接/CD ABD=CDB 又,/四边形是平行四边形。生:老师他们的这个题目连接也可以用同样的方法证明。师:很好,我们不仅解决了这个问题,同学们的思路也很开阔,能从不同的角度对这个问题加以验证。环节:中途小结、强化思路内容:师:大家看我们构造了两种符合题意的图像,并且用不同的方式进行了验证,我们却最终同样验证了结论的正确性。其实也就是说生:只要我们构造的图像符合命题的原本意思就可以。环节:应用、深

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论