2020届高考数学大二轮复习冲刺经典专题高难拉分攻坚特训二文.doc_第1页
2020届高考数学大二轮复习冲刺经典专题高难拉分攻坚特训二文.doc_第2页
2020届高考数学大二轮复习冲刺经典专题高难拉分攻坚特训二文.doc_第3页
2020届高考数学大二轮复习冲刺经典专题高难拉分攻坚特训二文.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高难拉分攻坚特训(二)1已知数列an满足a10,a114,an1ana,数列bn满足bn0,b1a12,bnbn1b,nN*.若存在正整数m,n(mn),使得bmbn14,则()Am10,n12 Bm9,n11Cm4,n6 Dm1,n3答案D解析因为an1ana,bnbn1b,则有an1ana10,b1b2bn0,且函数yx2x在(0,)上单调递增,故有b1a12b2ba11a,得b2a114,同理有b3a102,bma13m,又因为a12a11a12,故bmbna10a12,所以m1,n3.故选D.2已知f(x)b,g(x)f(x)21,其中a0,c0,则下列判断正确的是_(写出所有正确结论的序号)f(x)的图象关于点(0,b)成中心对称;f(x)在(0,)上单调递增;存在M 0,使|f(x)|M;若g(x)有零点,则b0;g(x)0的解集可能为1,1,2,2答案解析令y(a0),则该函数的定义域为R,且函数为奇函数,故其图象关于原点(0,0)对称又函数yf(x)的图象是由y(a0)的图象向上或向下平移|b|个单位而得到的,所以函数yf(x)图象的对称中心为(0,b),故正确当x0时,y,若a0,c0,则函数yx在(0, )上单调递减,所以函数yf(x)单调递增;函数yx在(,)上单调递增,所以函数yf(x)单调递减,故不正确令y(a0),则当x0时,y0,f(x)b,|f(x)|b|,令M|b|10,则|f(x)|M成立;当x0时,y,则|y|.所以|f(x)|b|b|,令M|b|,则|f(x)|M成立,故正确若g(x)有零点,则g(x)f(x)210,得f(x)1,从而得b1,故b1,结合可得当g(x)有零点时,只需|b1|即可,而b不一定为零,故不正确由g(x)f(x)210,得f(x)b1.取b0,1,整理得x2axc0.当a3,c2时,方程x23x20的两根为x1或x2.又函数y为奇函数,故方程的解集为1,1,2,2,故正确综上可得正确3在直角坐标系xOy中,动圆M与圆O1:x22xy20外切,同时与圆O2:x2y22x240内切(1)求动圆圆心M的轨迹方程;(2)设动圆圆心M的轨迹为曲线C,设A,P是曲线C上两点,点A关于x轴的对称点为B(异于点P),若直线AP,BP分别交x轴于点S,T,证明:|OS|OT|为定值解(1)圆O1:x22xy20,圆心O1(1,0),半径为1.圆O2:x2y22x240,圆心O2(1,0),半径为5.设动圆圆心M(x,y),半径为R,圆M与圆O1外切,|MO1|R1,圆M与圆O2内切,|MO2|5R,两式相加得:|MO1|MO2|6|O1O2|,由椭圆定义知:M在以O1,O2为焦点的椭圆上,2a6,a3,c1,b2.动圆圆心M的轨迹方程为1.(2)证明:设P(x1,y1),A(x2,y2),S(xS,0),T(xT,0),B(x2,y2)且x1x2.kAP,lAP:yy1kAP(xx1),yy1(xx1),令y0得xS;同理得,xT.|OS|OT|xSxT|,又P,A在椭圆上,y8,y8,yy,xyxy8x8x8(xx),|OS|OT|9.4已知函数f(x)(x1)exax21,aR.(1)当a1时,讨论f(x)的单调性;(2)当a1时,证明不等式0,令f(x)0,得x0,所以f(x)在(,0)上单调递减,在(0,)上单调递增当a1时,若x0,则exa0;若x0,则exa0,f(x)0.所以f(x)在R上单调递增当0a1时,令f(x)0,得x0或xln a,所以f(x)在(,ln a),(0,)上单调递增,在(ln a,0)上单调递减综上所述,当a0时,f(x)在(,0)上单调递减,在(0,)上单调递增;当a1时,f(x)在R上单调递增;当0a1时,f(x)在(,ln a),(0,)上单调递增,在(ln a,0)上单调递减(2)证明:由题意知,当a1时,f(x)(x1)exx21.当n1时,2f(0)0在(0,)上恒成立设g(x)exx1,则g(x)ex1,可知g(x)在(,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论