勾股全章教案+(1).doc_第1页
勾股全章教案+(1).doc_第2页
勾股全章教案+(1).doc_第3页
勾股全章教案+(1).doc_第4页
勾股全章教案+(1).doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

备课时间:( )周星期( ) 教出时间:( )周星期( ) 总第( )课时第十七章 勾股定理17.1.1 直角三角形三边的关系(1)教学目标:1.探索并掌握勾股定理:直角三角形两直角边的平方和等于斜边的平方. 2会应用勾股定理解决实际问题教学重点:探索勾股定理的证明过程教学难点:运用勾股定理解决实际问题教学过程:一.探索勾股定理试一试测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:三角尺直角边a直角边b斜边c关系12根据已经得到的数据,请猜想三边的长度a、 b、 c之间的关系由图17.1.1得出等腰直角三角形的三边关系图17.1.1是正方形瓷砖拼成的地面,观察图中用阴影画出的三个正方形,很显然,两个小正方形P、 Q的面积之和等于大正方形R的面积即AC,图17.1.1这说明,在等腰直角三角形中,两直角边的平方和等于斜边的平方那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?试一试观察图17.1.2,如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积 平方厘米;正方形Q的面积 平方厘米;(每一小方格表示1平方厘米)图17.1.2正方形R的面积 平方厘米我们发现,正方形P、 Q、 R的面积之间的关系是 由此,我们得出直角三角形的三边的长度之间存在关系 由图17.1.2得出一般直角三角形的三边关系.若C=90,则勾股定理:直角三角形两直角边的平方和等于斜边的平方ABC中,C=90, 则(a、b 表示两直角边,c表示斜边)变式:2介绍勾股定理的历史背景。二例题分析:例1.RtABC中,AB=c,BC=a,AC=b,B=90(1) 已知a=8,b=10,求c. (c=6)(2) 已知a=5,c=12,求b (b=13)注意:“B为直角”这个条件。三、引申提高:例2如图17.1.4,将长为5.41米的梯子AC斜靠在墙上,长为2.16米,求梯子上端A到墙的底边的垂直距离(精确到0.01米) 解 如图17.1.4,在Rt中, .米,.米, 根据勾股定理可得 .(米) 答: 梯子上端A到墙的底边的垂直距离 约为4.96米四巩固练习: 1书本1.2五课时小结:1. 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方2. 已知直角三角形两边的长或知道两边关系和第三边的长,可以利用勾股定理求出三角形未知边长,并可运用面积关系式求斜边上的高。六课堂作业: 2.3 17.1.1 直角三角形三边的关系(2)教学目标:1.用拼图的方法说明勾股定理的结论正确。2会应用勾股定理解决实际问题教学重点:利用勾股定理解决实际问题教学难点:构造直角三角形求解。教学过程:一 复习引入:1. 勾股定理的内容是什么?2.一直角三角形中有两条边的长为1和2,求第三边。二 体验勾股定理的几种探求方法:试一试剪四个与图17.1.5完全相同的直角三角形,然后将它们拼成如图17.1.6所示的图形大正方形的面积可以表示为 ,又可以表示为 对比两种表示方法,看看能不能得到勾股定理的结论 图17.1.5 图17.1.6用上面得到的完全相同的四个直角三角形,还可以拼成如图17.1.7所示的图形,与上面的方法类似,也能说明勾股定理是正确的由下面几种拼图方法,试一试,能否得出的结论。(1) (2) (3) (4) (5)探究点拔:1.将这四个全等的直角三角形拼成图(1),(2),(3)中所示的正方形,利用正方形的面积等于各部分面积的和可以得出。2.将两个直角三角形拼成图(4)中的梯形,由梯形面积等于三个直角三角形面积的和可以得到。3.通过剪接的方法构成如图(5)的正方形,可以证得。三应用:例1. 如图,为了求出湖两岸的AB两点之间的距离,一个观测者在点C设桩,使ABC恰好为Rt,通过测量,得到AC长160米,BC长128米,问从A点穿过湖到点B有多远?解:RtABC中,AC=100,BC=128,根据勾股定理得: (米)答:从A点穿过湖到点B有96米。说明:运用勾股定理的前提是三角形必须是直角三角形。若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理。例2 .在一棵树的10米高处有两只猴子,其中一只爬下树走向离树20米的池塘,而另一只爬到树顶后直扑池塘。如果两只猴子经过的距离相等,问这棵树有多高?解:设.RtABC中, 四引申提高:例3有一个棱长为1米且封闭的正方形盒子(如图),一只蚂蚁从顶点A向顶点B爬行,问这只蚂蚁爬行的最短路程为多少米?分析:最短路程为展开图中的米五 小结:1.说明勾股定理成立时要有一定的拼图能力。2.构造直角三角形,将实际问题转化为数学问题,运用勾股定理建立方程求解。六课堂作业:书1.2 17.1.2直角三角形的判定教学目标:1.掌握直角三角形的判别条件。 2.熟记一些勾股数。能对直角三角形的判别条件进行一些综合应用。教学重点 :直角三角形的判别条件及其应用;它可用边的关系来判断一个三角形是否是直角三角形。教学难点 :直角三角形的判别条件判断一个三角形是否是直角三角形及综合应用直角三角形的知识解题。教学过程:一 .复习引入:1、 复习直角三角形的性质:角的性质、边的性质。2、 我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?二、 讲述新课:1、 古代埃及人作直角:古埃及人曾用下面的方法得到直角:他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形。其直角在第4个结处。他们真的能够得到直角三角形吗?2、做一做下面的三组数分别是一个三角形的三边长a,b,c:5,12,13; 7,24,25; 8,15,17。(1)这三组数都满足 吗?(2)分别以这三组树为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?3、从做一做中,你能猜想到什么结论?勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形.例1 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形:(1) 7, 24, 25; (2) 12, 35, 37; (3) 13, 11, 9解 因为 25,所以根据前面的判定方法可知,以(1)、(2)两组数为边长的三角形是直角三角形,而以组(3)的数为边长的三角形不是直角三角形4、勾股数:能够成为直角三角形三边长的三个正整数,称为勾股数(或勾股弦数)。请你与你的同伴合作,看看可以找出多少组勾股数。练习:在一根长为170个单位的绳子上,分别标出A,B,C,D四个点,它们将绳子分为长为60个单位、45个单位和75个单位的三段线段。自己握住绳子的两个端点(A点和D点),两名同伴分别握住B点和C点,一起将绳子拉直,会得到一根什么形状?为什么?记住常用的勾股数能成为直角三角形三边的三个正整数叫做勾股数,32+42=52 3、4、5是一组勾股数同理 6、8、10是一组勾股数,5、12、13也是一组勾股数;此外,还可用下面的方法产生无数组勾股数:由例2a=n2-1b=2nc=n2+1n=2a=3b=4c=5n=3a=8b=6c=10n=4a=15b=8c=17三、 随堂练习:1、P54练习1.2题四、 小结:(1) 只要有两边的平方和等到于第三边的平方,这样的三角形是直角三角形,简记为:a2+b2=c2C=900(2) 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较;(3) 常用的勾股数有3、4、5、;6、8、10;5、12、13等。(4) 判定一个直角三角形,我们除了可根据定义去证明它有一个直角外,还可以采用今天的勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用;(5) 在定理中出现的a、b、c并不是固定的,要理解其实质;五、布置作业: 5.617、2 勾股定理的逆定理(一)教学目标1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2、探究勾股定理的逆定理的证明方法。3、理解原命题、逆命题、逆定理的概念及关系。教学重点:掌握勾股定理的逆定理及证明。教学难点:勾股定理的逆定理的证明。教学过程:一课堂引入创设情境:怎样判定一个三角形是等腰三角形?怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。二新课例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?同旁内角互补,两条直线平行。如果两个实数的平方相等,那么两个实数平方相等。线段垂直平分线上的点到线段两端点的距离相等。直角三角形中30角所对的直角边等于斜边的一半。分析:每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。解略。例2(探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。分析:注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。证明略。例3(补充)已知:在ABC中,A、B、C的对边分别是a、b、c,a=n21,b=2n,c=n21(n1)求证:C=90。分析:运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:先判断那条边最大。分别用代数方法计算出a2+b2和c2的值。判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。要证C=90,只要证ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n42n21,c2=(n21)2= n42n21,从而a2+b2=c2,故命题获证。三、课堂练习1、判断题。在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。命题:“在一个三角形中,有一个角是30,那么它所对的边是另一边的一半。”的逆命题是真命题。勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。ABC的三边之比是1:1:,则ABC是直角三角形。2、ABC中A、B、C的对边分别是a、b、c,下列命题中的假命题是( )A、如果CB=A,则ABC是直角三角形。B、如果c2= b2a2,则ABC是直角三角形,且C=90。C、如果(ca)(ca)=b2,则ABC是直角三角形。D、如果A:B:C=5:2:3,则ABC是直角三角形。3、下列四条线段不能组成直角三角形的是( )A、a=8,b=15,c=17B、a=9,b=12,c=15C、a=,b=,c=D、a:b:c=2:3:44、已知:在ABC中,A、B、C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角? a=,b=,c=; a=5,b=7,c=9;a=2,b=,c=; a=5,b=,c=1。四、课后练习,1、叙述下列命题的逆命题,并判断逆命题是否正确。如果a30,那么a20;如果三角形有一个角小于90,那么这个三角形是锐角三角形;如果两个三角形全等,那么它们的对应角相等;关于某条直线对称的两条线段一定相等。2、填空题。任何一个命题都有 ,但任何一个定理未必都有 。“两直线平行,内错角相等。”的逆定理是 。在ABC中,若a2=b2c2,则ABC是 三角形, 是直角;17、2 勾股定理的逆定理(二)教学目标1、灵活应用勾股定理及逆定理解决实际问题。2、进一步加深性质定理与判定定理之间关系的认识。教学重点:灵活应用勾股定理及逆定理解决实际问题。教学难点:灵活应用勾股定理及逆定理解决实际问题。:教学过程:一课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。二新课例1(例2)分析:了解方位角,及方位名词;依题意画出图形;依题意可得PR=121.5=17,PQ=161.5=24, QR=30;因为242+172=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知QPR=90;PRS=QPR-QPS=45。小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。分析:若判断三角形的形状,先求三角形的三边长;设未知数列方程,求出三角形的三边长5、12、13;根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。解略。三、课堂练习1、小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。2、如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?3、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40,问:甲巡逻艇的航向?四、课后练习1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。2、已知AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?3、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。 4如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;若B=30,则B的对边和斜边: ;三边之间的关系: 。5ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。17、2 勾股定理的逆定理(三)教学目标1、应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2、灵活应用勾股定理及逆定理解综合题。3、进一步加深性质定理与判定定理之间关系的认识。教学重点利用勾股定理及逆定理解综合题。教学难点:利用勾股定理及逆定理解综合题。教学过程:一课堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。二新课例1(补充)已知:在ABC中,A、B、C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断ABC的形状。分析:移项,配成三个完全平方;三个非负数的和为0,则都为0;已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。例2(补充)已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。分析:作DEAB,连结BD,则可以证明ABDEDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC中,3、4、5勾股数,DEC为直角三角形,DEBC;利用梯形面积公式可解,或利用三角形的面积。例3(补充)已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。 分析:AC2=AD2+CD2,BC2=CD2+BD2AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2六、课堂练习1、若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A、等腰三角形; B、直角三角形;C、等腰三角形或直角三角形; D、等腰直角三角形。2、若ABC的三边a、b、c,满足a:b:c=1:1:,试判断ABC的形状。3、已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且ABBC。 求:四边形ABCD的面积。4、已知:在ABC中,ACB=90,CDAB于D,且CD2=ADBD。求证:ABC中是直角三角形。七、课后练习,1、若ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求ABC的面积。2、在ABC中,AB=13cm,AC=24cm,中线BD=5cm。求证:ABC是等腰三角形。3、已知:如图,1=2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。求证:AB2=AE2+CE2。4、已知ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定ABC的形状。勾股定理的应用(一)教学目标:1、会用勾股定理解决简单的实际问题。2、树立数形结合的思想。教学重点:勾股定理的应用。教学难点:实际问题向数学问题的转化。教学过程:一新课例1如图17.2.1,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程图17.2.1分析 蚂蚁实际上是在圆柱的半个侧面内爬行,如果将这半个侧面展开(如图17.2.2),得到矩形 D,根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形对角线AC之长(精确到.cm)图17.2.2解 如图17.2.2,在Rt中,底面周长的一半cm, AC229(cm)(勾股定理)答: 最短路程约为cm例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图17.2.3的某工厂,问这辆卡车能否通过该工厂的厂门?图17.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图.所示,点D在离厂门中线0.8米处,且CD, 与地面交于H解 在RtOCD中,由勾股定理得.米,C.(米).(米)因此高度上有0.4米的余量,所以卡车能通过厂门四.随堂练习:1、P54练习1.2题1、ABC中,AB=AC=25cm,高AD=20cm,则BC= ,SABC= 。2、ABC中,若A=2B=3C,AC=cm,则A= 度,B= 度,C= 度,BC= ,SABC= 。3、ABC中,C=90,AB=4,BC=,CDAB于D,则AC= ,CD= ,BD= ,AD= ,SABC= 。4、已知:如图,ABC中,AB=26,BC=25,AC=17,求SABC。五、作业练习册中习题 1、2、3。勾股定理的应用(二)教学目标1、会用勾股定理解决较综合的问题。2、树立数形结合的思想。教学重点:勾股定理的综合应用。教学难点:勾股定理的综合应用。教学过程:一.举例例3如图17.2.5,在的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1) 从点A出发画一条线段,使它的另一个端点在格点(即小正方形的顶点)上,且长度为22;(2) 画出所有的以(1)中的为边的等腰三角形, 使另一个顶点在格点上,且另两边的长度都是无理数分析只需利用勾股定理看哪一个矩形的对角线满足要求 图17.2.5 图17.2.6解(1) 图17.2.6中长度为22(2) 图17.2.6中、 D就是所要画的等腰三角形例4如图17.2.7,已知CDm, ADm, ADC, BCm, m求图中阴影部分的面积图17.2.7解 在RtADC中,AC(勾股定理), ACm , ACB为直角三角形(如果三角形的三边长a、 b、 c有关系: abc,那么这个三角形是直角三角形), S阴影部分ACBACD1/21/2(m)二、随堂练习1、对岸取一点A,使AC垂直江岸,测得BC=50米,B=60,则江面的宽度为 。2、有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。3、一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RPPQ,则RQ= 厘米。4、如图,钢索斜拉大桥为等腰三角形,支柱高24米,B=C=30,E、F分别为BD、CD中点,试求B、C两点之间的距离,钢索AB和AE的长度。(精确到1米)三作业回顾与思考教学目标1掌握直角三角形的边、角之间分别存在着的关系,熟练地运用直角三角形的勾股定理和其他性质解决实际问题。2正确使用勾股定理的逆定理,准确地判断三角形的形状。3熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发学生的爱国热情,培养探索知识的良好习惯。教学重点:掌握勾股定理及其逆定理。教学难点:准确应用勾股定理及其逆定理。教具准备:投影仪,胶片,彩色水笔,三角板等教学方法:启发式教育教学过程 一、回顾与思考 1直角三角形的边存在着什么关系? 2直角三角形的角存在着什么关系? 3直角三角形还有哪些性质?4如何判断一个三角形是直角三角形? 5你知道勾股定理的历史吗?二讲例BDCAO问题:如图,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?(留几分钟的时间给学生思考)分析:1、求梯子的底端B距墙角O多少米? 2、如果梯子的顶端A沿墙下滑0.5m至C,请同学们猜一猜:(1)底端也将滑动0.5米吗?(2)能否求出OD的长?解:根据勾股定理,在RtOAB中,AB=3m,OA=2.5m,OB2=AB2-OA2= 32-2.52=2.75。OB1.658m;在RtOCD中,OC=OA-AC=2m,CD=AB=3m,OD2=CD2-OC2= 32-22=5。OD2.236m。BD=OD-OB=2.236-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论