数学人教版六年级下册《抽屉原理》一课教学设计.docx_第1页
数学人教版六年级下册《抽屉原理》一课教学设计.docx_第2页
数学人教版六年级下册《抽屉原理》一课教学设计.docx_第3页
数学人教版六年级下册《抽屉原理》一课教学设计.docx_第4页
数学人教版六年级下册《抽屉原理》一课教学设计.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抽屉原理一课教学设计 隆坊镇中心小学:白凤侠教材分析抽屉原理是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。教学内容:义务教育课程标准实验教科书 数学(人教版)六年级下册第7071页。教学目标:1经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2通过操作发展学生的类推能力,形成比较抽象的数学思维。3培养学生有根据、有条理地进行思考和推理的能力。4通过“抽屉原理”的灵活应用感受数学的魅力。提高学生解决数学问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教学准备:教学准备:铅笔、书、杯子、糖果,多媒体课件。教学过程:一、创设情境,导入新知。1老师组织学生做“放糖果的游戏”。请一位同学上来把4颗糖果放在三个杯子里,你准备怎样放?(要求4颗糖果必须放完)你想说什么?生:至少有一个杯子放了2颗糖。2 老师请一位同学把6本书分给5个同学,你准备怎么分?(老师先猜猜不论怎么分总有一个同学至少分到2本书) 分完后和老师说的一样吗?师:为什么我能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(设计意图:学生在生活中已积累了有关这类问题的感性经验,教学从学生熟悉的例子引入,可以激活学生的生活经验,让学生利用已有的经验初步感知抽象的“抽屉原理”,将数学学习与现实生活紧密联系,提高学生的学习兴趣。)二、自主操作,探究新知(一)教学例11、观察猜测课件出示例1:把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒至少放进_枝铅笔。猜一猜:不管怎么放,总有一个文具盒至少放进_枝铅笔。2、自主思考师:把4枝铅笔放进3个文具中盒中,可以怎样放? 有几种不同的放法?(小组合作)请同学们实际放放看。学生动手操作,将不同的放法记录下来。(师巡视,了解情况,个别指导)3、交流汇报师:谁来展示一下你摆放的情况?生:汇报。师:观察这四种分法,在每一种放法中,有几枝铅笔放进了同一个文具盒?生:回答。师:: 我们已经将所有的放法一一列举出来,你们发现什么?生:不管怎么放,总有一个文具盒里至少有2枝铅笔。师:“总有”是什么意思?生:一定有师:“至少”有2枝什么意思?生:不少于两只枝,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。(通过操作让学生充分体验感受)师:把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作得到了这个结论。(设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2枝铅笔”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2枝”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。)师:请同学们观察这4种分法,哪种放法能更容易,更简便地得出这个结论呢?为什么?学生思考组内交流学生上台操作(边演示边说)-汇报.(设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。)教师小结:只有平均分才能使每个文具盒里的铅笔最少。假如每个文具盒里放入一枝铅笔,剩下的一枝还要放进一个文具盒里,无论放在哪个文具盒里,都能找到一个文具盒里至少有2枝铅笔。 4、解决问题。(课件)出示第70页“做一做”。 7只鸽子飞进5个鸽舍,至少有几只鸽子飞进同一个鸽舍?为什么?(设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。)(1)学生独立思考,自主探究。(2)交流,说理。(学生说理,根据学生说理情况,教师或者学生进行操作演示)师:余下的两只鸽子应该怎样分?为什么?(进一步强调“至少”情况)师:我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)(设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。)小结:把4枝铅笔放进3个文具盒中,我们可以把4枝铅笔看作物体,3个文具盒看作抽屉。把4个物体放进3个抽屉中,不管怎么放,总有一个抽屉至少放进2个物体。人们把这一原理形象的称为抽屉原理。板书:抽屉原理引导学生发现:不论怎么放,用铅笔的枝数除以文具盒数,再用所得的商加1,就会发现“总有一个文具盒里至少有商加1枝铅笔”了。师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。(设计意图:在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。) (二)教学例21、课件出示例题2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉中至少有( )本书,为什么?(设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。)师;我们又该如何思考?能用算式表示出你的思考方法吗?师:5是什么?2是什么?这个2又是什么?1呢?那么至少有多少本书放进同一个抽屉里?师:如果一共有7本会怎样呢?9本呢?(根据学生回答,板书相应的除法算式。)2、学生汇报。(交流、说理活动)老师板书。3、师:观察板书你能发现什么?在小组里进行研究、讨论。交流、说理活动:4、解决问题。出示第71页“做一做”8只鸽子飞进3个鸽舍,至少有3只鸽子飞进同一个鸽舍。为什么?师: 你能证明这个结论吗?(根据学生回答,板书相应的除法算式。)(设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2个”得到“至少商+1个的结论。)5、总结规律: 观察板书,你有什么发现吗?学情预设:“商+余数”和“商+1”两种情况:师:验证一下,看看到底是商+1,还是+余数?(设计意图:通过学生的辩论,从而认识到余数也要平均分,而余数小于除数,所以只会再多一个。)总结:物体的数量大于抽屉的数量,总有一个抽屉里至少放进商+1个物体。三、灵活应用,解决问题从扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。从中抽出18张牌,至少有几张是同花色?从中抽出20张牌,至少有几张数字相同?试一试,并说明理由。(1)帮助学生理解题意:剩下的52张扑克有4种花色。(2)学生思考,可以动手试一试。(3)学生汇报交流。四、小结 学生畅谈收获?五、板书设计 抽屉原理 物体数 抽屉数 5 2 =2本1本(商加1) 7 2 =3本1本(商加1) 9 2 =4本1本(商加1)8 3 =2只2只(商加1)至少数=商+1 教学反思:本节课是通过几个直观例子,借助实际操作,引导学生探究“抽屉原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。1、 借助直观操作,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。2、 教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论