




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Music and the Brain 1、Music surrounds us and we wouldnt have it any other way. An exhilarating orchestral crescendo can bring tears to our eyes and send shivers down our spines. Background swells add emotive punch to movies and TV shows. Organists at ballgames bring us together, cheering, to our feet. Parents croon soothingly to infants. 1、音乐环绕在我们周围,这是音乐唯一的方式。振奋人心的管弦乐的高潮部分会使我们热泪盈眶,精神振奋;背景音乐的推进增加了电影和电视剧的情感色彩;球类比赛中风琴演奏使我们共同起立欢呼;父母的轻唱使婴儿得到安抚。 2、And our fondness has deep roots: we have been making music since the dawn of culture. More than 30,000 years ago early humans were already playing bone flutes, percussive instruments and jaw harps and all known societies throughout the world have had music. Indeed, our appreciation appears to be innate. Infants as young as two months will turn toward consonant, or pleasant, sounds and away from dissonant ones. And when a symphonys denouement gives delicious chills, the same kinds of pleasure centers of the brain light up as they do when eating chocolate or taking cocaine. 2、我们对音乐的喜好根深蒂固:自从文化诞生之日起,我们就开始创造音乐。3万年以前,早起人类就已经吹骨笛、使用打击乐器、吹单簧口琴世界上所有已知社会都有音乐。的确,我们欣赏音乐的能力似乎是与生俱来的。两个月大的婴儿就会对美妙和谐的声音表现出青睐,而对刺耳的声音则会表现出厌恶。当交响乐的终结曲目给我们带来美妙的快感是,大脑中的快感中枢就会兴奋起来,这种感觉就像我们吃了巧克力或者喝了可卡因一样。 3、Therein lies an intriguing biological mystery: Why is music universally beloved and uniquely powerful in its ability to wring emotions so pervasive and important to us? Could its emergence have enhanced human survival somehow, such as by aiding courtship, as Geoffrey F. Miller of the University of New Mexico has proposed? On the other hand, to use the words of Harvard Universitys Steven Pinker, is music just “auditory cheesecake” a happy accident of evolution that happens to tickle the brains fancy? 3、这其中存在着一个有趣的生物之谜:为什么音乐这一广受人们喜爱并以其独特的魅力牵动人的情感的事物如此盛行,又对我们如此重要?他的出现是否在某种程度上有助于人类的生存,比如像墨西哥大学的杰弗里F米勒所提出的,它能促进择偶?或者,借用哈佛大学的史蒂芬品克的话,音乐仅仅是“听力奶油蛋糕”,也就是说,它是进化中的偶然事件,不经意却满足了人类的幻想 4、Why is music so pervasive and important to us? Neuroscientists dont yet have the ultimate answers. But in recent years we have begun to gain a firmer understanding of where and how music is processed in the brain, which should lay a foundation for answering evolutionary questions. Collectively, studies of patients with brain injuries and imaging of healthy individuals have unexpectedly uncovered no specialized brain “center” for music. Rather music engages many areas distributed throughout the brain, including those that are normally involved in other kinds of cognition. The active areas vary with the persons individual experiences and musical training. The ear has the fewest sensory cells of any sensory organ 3,500 inner hair cells occupy the ear versus 100 million photoreceptors in the eye. Yet our mental response to music is remarkably adaptable; even a little study can “retune” the way the brain handles musical inputs. 4、为什么音乐如此盛行,又对我们如此重要。对于这个问题,神经科学家尚未得出最终答案。但是近几年来我们对于音乐在大脑中何处以何种方式进行加工的这一问题已经开始有了越来越深入的理解。这应当能够为我们回答进化问题打下一定的基础。出乎人们的意料,对脑损伤病人的研究和对健康个体的图像共同揭示了大脑中不存在专门加工音乐的中枢。音乐占用了遍布大脑各处的多个区域,包括那些一般情况下处理其他认知活动的区域。对音乐起作用的区域因个人的经历和所受的训练而异,在人类感觉器官中,耳朵具有的感觉细胞最少,只有3500个内毛细胞,而眼睛则拥有1亿个感光器。但是大脑对音乐的反应却相当灵活:甚至仅仅经过一点训练就能改变大脑处理音乐输入信息的方式。5、Until the advent of modern imaging techniques, scientists gleaned insights about the brains inner musical workings mainly by studying patients including famous composers who had experienced brain deficits as a result of injury, stroke or other ailments. For example, in 1933 French composer Maurice Ravel began to exhibit symptoms of what might have been focal cerebral degeneration, a disorder in which discrete areas of brain tissue atrophy. His conceptual abilities remained intact he could still hear and remember his old compositions and play scales. But he could not write music. Speaking of his proposed opera Jeanne dArc, Ravel confided to a friend, “.this opera is here, in my head. I hear it, but I will never write it. Its over. I can no longer write my music.” The case lent credence to the idea that the brain might not have a specific center for music. 5、现代图像处理技术出现之前,科学家理解大脑内部对音乐的处理主要是依靠研究病人,包括曾经因为外伤、中风或其它疾病而表现出大脑缺陷的著名作曲家。例如,法国作曲家莫里斯斯拉威尔在1933年开始表现出看似局部脑退化的症状,即由于某些具体区域的大脑组织萎缩而导致的精神紊乱。他的概念性能力仍然完好无损他仍然能够听到和记住自己以前的作品,并且可以弹奏音节,但是他无法再创作音乐。拉威尔有一次在谈到他所提议的歌剧圣女贞德时,向朋友坦白说“这个歌剧就在这里,在我脑子里,我能听到它,但是我无论如何也不能谱写出来了。一切都完了,我再也创作不了音乐了。”这一案例支持了大脑中或许不具有专门处理音乐区域这一观点。 6、The experience of another composer additionally suggested that music and speech were processed independently. After suffering a stroke in 1953, Vissarion Shebalin, a Russian composer, could no longer talk or understand speech, yet he retained the ability to write music until his death 10 years later. Thus, the supposition of independent processing appears to be true, although more recent work has yielded a more nuanced understanding, relating to two of the features that music and language share: both are a means of communication, and each has a syntax, a set of rules that govern the proper combination of elements (notes and words, respectively). According to Aniruddh D. Patel of the Neurosciences Institute in San Diego, imaging findings suggest that a region in the frontal lobe enables proper construction of the syntax of both music and language, whereas other parts of the brain handle related aspects of language and music processing. 6、另外一个作曲家的经历进一步表明音乐和语言是独立进行加工的。俄国作曲家维萨里森沙柏林于1953年患中风,丧失了说话和听话的能力。但是在此后10年间,一直到他去世前,他却仍然具有创作音乐的能力。因此,关于音乐和语言各自进行加工的假设似乎是正确的,尽管近期的研究使人们对这个问题的理解更加细化且稍有不同,即音乐和语言有共享的两个特点:其一,两者都是交流方式;其二,音乐和语言都有句法,即约束其基本元素(分别为音符和单词)正确结合的一套规则。圣地亚哥神经学院的奥耐滴D派特认为,图像结果表明额叶的一个区域可以构建音乐和言语的句法,而大脑其他部分处理语言和音乐加工的相关方面工作。 7、Imaging studies have also given us a fairly fine-grained picture of the brains responses to music. These results make the most sense when placed in the context of how the ear conveys sounds in general to the brain. Like other sensory systems, the one for hearing is arranged hierarchically, consisting of a string of neural processing stations from the ear to the highest level, the auditory cortex. The processing of sounds, such as musical tones, begins with the inner ear (cochlea), which sorts complex sounds produced by, say, a violin, into their constituent elementary frequencies. The cochlea then transmits this information along separately tuned fibers of the auditory nerve as trains of neural discharges. Eventually these trains reach the auditory cortex in the temporal lobe. Different cells in the auditory system of the brain respond best to certain frequencies; neighboring cells have overlapping tuning curves so that there are no gaps. Indeed, because neighboring cells are tuned to similar frequencies, the auditory cortex forms a “frequency map” across its surface. 7、图像研究也为我们提供了大脑对音乐做出反应的较为精细的画面。如果我们看一下耳朵一般是如何将声音传递给大脑的,就能看出这些研究结果说明的问题。正如其它感觉系统,听力系统也是分层排列的,从耳朵到听力脑皮层这一最高层包括一系列的神经加工站。对声音,如音调的加工从内耳开始,内耳将由诸如小提琴所发出的声音分成基本组成频率,然后将这一信息以一系列的神经元放电形式沿着听力神经分别调试的纤维进行传递。最终,这些神经元放电到达位于额叶的听力脑皮层。大脑中听力系统的不同细胞对特定频率的敏感性最强;相邻细胞的调谐曲线有重叠之处,因此,不会有漏掉的音符。其实,由于相邻细胞调谐于相似的频率,使得听力脑皮层表面形成了一个频率分布图。 8、The response to music per se, though, is more complicated. Music consists of a sequence of tones, and perception of it depends on grasping the relationships between sounds. Many areas of the brain are involved in processing the various components of music. Consider tone, which encompasses both the frequencies and loudness of a sound. At one time, investigators suspected that cells tuned to a specific frequency always responded the same way when that frequency was detected. 8、然而,音乐本身要更加复杂,音乐包含一系列的音调,听懂音乐意味着要掌握声音之间的关系。大脑很多区域参与了对音乐各组成部分的加工活动。就拿既有频率又有音量的音调来说,研究者曾一度认为对特定频率敏感的细胞当在检测到这一频率时总会以相同的方式做出反应。 9、But in the late 1980s Thomas M. McKenna and I, working in my laboratory at the University of California at Irvine, raised doubts about that notion when we studied contour, which is the pattern of rising and falling pitches that is the basis for all melodies. We constructed melodies consisting of different contours using the same five tones and then recorded the responses of single neurons in the auditory cortices of cats. We found that cell responses (the number of discharges) varied with the contour. Responses depended on the location of a given tone within a melody; cells may fire more vigorously when that tone is preceded by other tones rather than when it is the first. Moreover, cells react differently to the same tone when it is part of an ascending contour (low to high tones) than when it is part of a descending or more complex one. These findings show that the pattern of a melody matters: processing in the auditory system is not like the simple relaying of sound in a telephone or stereo system. 9、但是在二十世纪80年代后期,我和托马斯M麦肯纳在加利福尼亚大学欧文分校的实验室对旋律曲线,即构成所有旋律基本元素的升降调模式进行相关实验后,对上述观点提出了质疑。我们用五个同样的音符组成具有不同旋律曲线的曲调,然后记录下来猫听力脑皮层中各个神经元的反应。我们发现细胞做出的反应(即神经元放电)因旋律曲线而异,由特定音调在曲调中的位置而定,当该音调位于曲调中间而非最开始的位置时,细胞会做出最强烈的反应。而且,同样的一个音符,当它位于升调曲线中时和当它位于降调曲线或是更复杂曲线中时,细胞做出的反应也各不相同。这些研究结果表明,曲调模式至关重要:听力系统的加工完全不同于将电话和音响系统中的声音进行简单转化。10、Brain responses also depend on the experiences and training of the listener. Even a little training can quickly alter the brains reactions. For instance, until about 10 years ago, scientists believed that tuning was “fixed” for each cell in the auditory cortex. Our studies on contour, however, made us suspect that cell tuning might be altered during learning so that certain cells become extra sensitive to sounds that attract attention and are stored in memory. 10、大脑对音乐的反应还由听众的经历和所受训练而定,只要稍做训练就可以很快改变大脑的反应。例如,约10年前,科学家还认为听力脑皮层中的每一个细胞对固定的音符调谐,但是对旋律曲线的研究使我们对此提出质疑,我们认为细胞调谐可以通过学习而改变,某些细胞可以对那些引发注意力或储存在记忆中的声音表现出特别的敏感性。 11、To find out, Jon S. Bakin, Jean-Marc Edeline and I conducted a series of experiments during the 1990s in which we asked whether the basic organization of the auditory cortex changes when a subject learns that a certain tone is somehow important. Our group first presented guinea pigs with many different tones and recorded the responses of various cells in the auditory cortex to determine which tones produced the greatest responses. Next, we taught the subjects that a specific, non-preferred tone was important by making it a signal for a mild foot shock. The guinea pigs learned this association within a few minutes. We then determined the cells responses again, immediately after the training and at various times up to two months later. The neurons tuning preferences had shifted from their original frequencies to that of the signal tone. Thus, learning retunes the brain so that more cells respond best to behaviorally important sounds. 11、为了解决上述问题,我和琼S贝克,简麦克爱德森于二十世纪90年代进行一系列实验,以研究当受试者得知某一音调较为重要时,其听力脑皮层的基本结构是否会
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高端医用耗材合作协议书
- 2025安徽蚌埠市城市投资控股集团有限公司所属公司社会招聘19人(第二批)考前自测高频考点模拟试题及答案详解(有一套)
- 2025河南驻马店上蔡县第二高级中学教师招聘25人模拟试卷及答案详解(易错题)
- 2025年春季漳州能源校园招聘全面启动模拟试卷及完整答案详解1套
- 2025江苏南京江北新区产业投资集团有限公司下属子公司招聘拟聘考前自测高频考点模拟试题及答案详解1套
- 2025广东工业大学计算机学院聘用制人员招聘1人考前自测高频考点模拟试题及答案详解(易错题)
- 2025江西省人民医院鄱阳医院-鄱阳县第二人民医院招聘编制外卫生专业技术人员15人考前自测高频考点模拟试题有答案详解
- 2025年淮北师范大学公开招聘高层次人才90人模拟试卷带答案详解
- 2025春季四川内江市东兴区公办学校选调教师198人考前自测高频考点模拟试题含答案详解
- 2025年广东省烟草专卖局招聘(235人)模拟试卷及答案详解(夺冠)
- 肺癌教学课件
- 《生产运营管理》 课件 第4章-流程分析与生产能力设计
- 华为公司采购部管理制度
- 2025年陕西高考物理试卷真题及答案详解(山西宁夏青海适用)
- T/CASWSS 009-2023社区老年中医健康管理服务中心功能性食品调理规范
- 博物馆资源融入音乐课程的美育路径研究
- 语文-湖南省2025届普通高中名校联考信息卷(模拟一)试题和答案
- 六上冬季星空
- 2024-2025年华为ICT网络赛道考试真题试题库-下(多选、判断题)
- 《罗兰贝格管理咨询》课件
- 2024年江苏省高考政治试卷(含答案逐题解析)
评论
0/150
提交评论