



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大新寨学区初级中学教案年级九学科数学主备人高媛审核人时间课型新授课题2413 弧、弦、圆心角学习目标1、(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;2、(1)通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力;(2)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题3、培养学生积极探索数学问题的态度及方法重难点重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明导学准备课件,多媒体教学环节导学过程个性设计【情景导学提出问题】【自主探究尝试解决】【讨论交流合作解决】【成果展示归纳升华】【训练检测拓展升华】课后巩固积累沉淀复习:1.垂径定理 。垂径定理逆定理 。1.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的O和O,沿圆周分别将两圆剪下;(2)在O和O上分别作相等的圆心角AOB和AOB,如图1所示,圆心固定注意:在画AOB与AOB时,要使OB相对于OA的方向与OB相对于OA的方向一致,否则当OA与OA重合时,OB与OB不能重合图1(3)将其中的一个圆旋转一个角度使得OA与OA重合通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作 由已知条件可知AOBAOB;由两圆的半径相等,可以得到OABOBAOAB=OBA;由AOBAOB,可得到ABAB;由旋转法可知在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与OA重合时,由于AOBAOB这样便得到半径OB与OB重合因为点A和点A重合,点B和点B重合,所以和重合,弦AB与弦AB重合,即,AB=AB进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等2根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等师生活动设计:本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题1如图2,在O中,ACB60,求证AOB=AOC=BOC图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析由,得到,ABC是等腰三角形,由ACB60,得到ABC是等边三角形,AB=AC=BC,所以得到AOB=AOC=BOC教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法证明 AB=AC,ABC是等腰三角形又 ACB60, ABC是等边三角形,AB=BC=CA AOB=AOC=BOC2如图3,AB是O的直径,BC、CD、DA是O的弦,且BCCDDA,求BOD的度数 图3学生活动设计:学生分析,由BCCDDA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到AOD=DOC=BOC,而AB是直径,于是得到BOD180120教师活动设计:此问题的解决方式和活动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年模型水印检测算法对比试题(含答案与解析)
- 2025年数据清洗缺失值处理(含答案与解析)
- 小学数学实验设计与学生思维进阶的教学实践
- 钢结构施工方案编制范文
- 2025年智慧公交系统智能调度与运营优化评估报告
- 电商平台的知识产权保护与治理:2025年知识产权保护与产业发展研究报告
- 呼吸科感染病例报告制度流程
- 保障高端住宅物业管理服务质量的措施
- 高等教育学科专业设置调整优化的策略及实施路径
- 2025年农村金融服务体系金融科技与农村金融服务创新模式研究报告
- 泵与风机课堂版
- GB/T 8572-2010复混肥料中总氮含量的测定蒸馏后滴定法
- GB/T 26121-2010可曲挠橡胶接头
- 校本课程讲座课件
- 人教版(2019)必修三 Unit 3 Diverse Cultures Listening and Talking课件
- 四川省眉山市各县区乡镇行政村村庄村名居民村民委员会明细
- 幼小可爱卡通家长会通用
- 中西医治疗高血压课件
- TOP100经典绘本课件-《大卫上学去》
- 部编人教版七年级语文上册《朝花夕拾》
- 菌种购入、使用、销毁记录表单
评论
0/150
提交评论