免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档梅涅劳斯定理【定理内容】如果一条直线与的三边、或其延长线交于、点,那么.评等价叙述:的三边、或其延长线上有三点、,则、三点共线的充要条件是。三点所在直线称为三角形的梅氏线。【背景简介】梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。【证法欣赏】证法1:(平行线分线段成比例)证:如图,过作交延长线于,又则证法2:(正弦定理)证:如图,令,在中,由正弦定理知:,同理,即.【逆定理】梅涅劳斯定理的逆定理也成立,即如果有三点、分别在的三边、或其延长线上,且满足,那么、三点共线。注利用梅涅劳斯定理的逆定理可判定三点共线【定理应用】梅涅劳斯定理的应用定理1:若的的外角平分线交边延长线于,的平分线交边于,的平分线交边于,则、三点共线。证:由三角形内、外角平分线定理知, , 则, 故、三点共线。【定理应用】梅涅劳斯定理的应用定理2:过任意的三个顶点、作它的外接圆的切线,分别和、的延长线交于点、,则、三点共线。证:是的切线,则,同理:, 故、三点共线。【定理应用】【例1】已知:过顶点的直线,与边及中线分别交于点和.求证:.证明:直线截,由梅涅劳斯定理,得:又,则 注此例证法甚多,如“平行线”、“面积法”等,详情参看初中数学一题多解欣赏【定理应用】【例2】已知:过重心的直线分别交边、及延长线于点、.求证:.证:连接并延长交于,则,截,由梅氏定理得,;同理:,即欢迎您的下载,资料仅供参考!致力为企业和个人提供合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东营低压电工考试题及答案
- 防水卷材行业研究报告
- 高中生物实验专题(人教版新课标所有实验)
- 高速铁路电力远动箱变设计方案简析
- 黄花菜行业发展趋势及竞争策略研究报告
- 2025年成都百万职工技能大赛(养老护理员)备赛试题库(含答案)
- 2020-2025年教师资格之中学美术学科知识与教学能力自我检测试卷B卷附答案
- 妊娠剧吐护理指南
- 双方协议书楼梯设计
- 碍景房拆除协议书
- 纪委日常监督培训课件
- 植物生理学实验指导
- 干部履历表(中共中央组织部2015年制)
- 新能源汽车电力电子技术全套教学课件
- Emily-Dickinson艾米丽-迪金森
- 急性胰腺炎(普外科)
- 读书分享交流会《全球通史》课件
- 国家开放大学汉语言文学本科“现代汉语专题”形成性考核04任务参考答案
- 人教版(2019)选择性必修第二册Unit 1 Science and Scientists Workbook Expanding Your World 课件
- 中学学校安全管理制度汇编
- 前置胎盘临床诊断与处理指南
评论
0/150
提交评论