数学人教版八年级下册17.1勾股定理.docx_第1页
数学人教版八年级下册17.1勾股定理.docx_第2页
数学人教版八年级下册17.1勾股定理.docx_第3页
数学人教版八年级下册17.1勾股定理.docx_第4页
数学人教版八年级下册17.1勾股定理.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

17.1勾股定理第1课时 一、教学目标 知识与技能: 1.了解勾股定理的文化背景,了解利用拼图验证勾股定理的方法.2.能说出勾股定理,并能应用其进行简单的计算. 过程与方法: 1.在勾股定理的探索过程中,经历观察猜想归纳验证的数学发现过程.2.发展合情推理的能力,体会数形结合思想、由特殊到一般的数学思想、分类讨论思想. 情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增强学习数学的信心,激发学生的民族自豪感和爱国情怀. 二、 教学重难点:【重点】探索和验证勾股定理,并能应用其进行简单的计算.【难点】用拼图的方法验证勾股定理. 三、教学准备【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、方格纸、三角形模型. 四、教学过程 1.新课导入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2002年在北京召开了第24届国际数学家大会.此图案就是大会会徽的图案. 大会的会徽图案有什么特殊含义呢?这个图案与数学中的勾股定理有着密切的关系.中国古代人把直角三角形中较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.上述图案就揭示了“勾”“股”“弦”之间的特殊关系.我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许多特殊的性质.研究特例是数学研究的一个方法,直角三角形是有一个角为直角的特殊三角形,等腰直角三角形又是特殊的直角三角形,直角三角形的三边之间存在怎样的关系呢?我们的探究活动就从等腰直角三角形开始吧.设计意图勾股定理揭示的是特殊三角形的三边关系,从探索等腰直角三角形三边关系入手,揭示直角三角形的三边关系,体现了由特殊到一般的数学研究方法.2. 构建新知探索勾股定理(1)探索等腰直角三角形三边之间的关系.过渡语(如教材第22页图)相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关系.师:这个地面图案中有大大小小、各种“姿势”的正方形.毕达哥拉斯在这些正方形中发现了什么呢?(出示教材图17.1 - 2)(1)问题提出:在图17.1 - 2中,是以等腰直角三角形三边为边长的三个正方形.这三个正方形面积之间存在怎样的关系?三个正方形之间的面积关系说明了什么?(2)学生活动:质疑、猜测、探索、交流三个正方形面积之间的关系.学生的探索方法可能是:通过数正方形内等腰直角三角形个数的办法,得出两个小正方形的面积之和等于大正方形的面积.(3)教师总结:通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形中的等腰直角三角形补成一个大正方形,得出结论:小正方形的面积之和等于大正方形的面积,也就是等腰直角三角形两条直角边的平方和等于斜边的平方.追问:在图17.1 - 2中,如果选取更大的等腰直角三角形,按照同样的方法作三个正方形,这三个正方形的面积关系还一样吗?如图所示. 设计意图这个探索活动是学习、探索勾股定理的基础.借助三个正方形面积之间的关系,探索等腰直角三角形三边的数量关系,这是本活动的出发点.提出追问的问题,有助于学生的认识上升到整个直角三角形的一般性的高度,也为学生有个性的创意活动搭建了平台.(2)探索具体边长的非等腰直角三角形三边之间的关系.过渡语除了等腰直角三角形之外,一些特殊边长的直角三角形,还有斜边的平方等于两条直角边的平方和的规律吗?(出示教材图17.1 - 3) 提出问题:(结合带提示的下图)1.正方形A,B,C的面积分别是多少?它们之间的数量关系说明了什么?2.正方形A,B,C的面积分别是多少?它们之间的数量关系说明了什么? 学生活动:依据教材探究的提示,根据直角三角形的边长,分别计算出正方形A,B,A,B的面积;再通过建立一个大正方形计算出正方形C,C的面积.探究提示:正方形A,B的面积分别为4和9,通过建立边长为5的正方形,计算出正方形C的面积为25减去四个小直角三角形面积和,也就是正方形C的面积为13.同理,正方形A,B的面积分别为9和25,通过建立边长为8的正方形,计算出正方形C的面积为64减去四个小直角三角形面积和,也就是正方形C的面积为34.活动总结:直角三角形两条直角边长的平方和等于斜边长的平方.设计意图由特殊到一般,借助网格,利用面积割补法计算正方形的面积,探索直角三角形三边之间的关系,为探究无网格背景下直角三角形三边关系打下基础,提供方法.勾股定理的证明(出示教材图17.1 - 5)让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明. 图中大正方形的面积是c2,直角三角形的面积是ab,中间正方形的面积为(b-a)2,则有c2=ab4+(b-a)2,即a2+b2=c2.教师适时介绍:这个图案是公元3世纪汉代的赵爽在注解周髀算经时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以按如图所示围成一个大正方形,中间部分是一个小正方形(黄实).我们刚才用割的方法证明使用的就是这个图形.教师在学生归纳基础上总结:直角三角形两直角边长的平方和等于斜边长的平方.中国人称它为“勾股定理”,外国人称它为“毕达哥拉斯定理”.设计意图通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,发展学生的形象思维,使学生对定理的理解更加深刻,体会数学中数形结合的思想.通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.通过了解勾股定理的证明方法,增强学生学习数学的自信心.利用下面这些图也能证明这个结论吗? 教师指导学生验证.我们证明了以上结论的正确性,我们就可称之为定理,这就是著名的“勾股定理”.请同学们用不同的表达方式(文字语言、符号语言)表述这一定理.勾股定理的名称介绍:3000多年前,我国古代有一个叫商高的人说:“把一根直尺折成直角,两端连接得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.因为勾股定理内容最早出现在商高的话中,所以又称“商高定理”.一千多年后,西方的毕达哥拉斯证明了此定理,因此又叫“毕达哥拉斯定理”,当时毕达哥拉斯学派为了纪念这一发现,杀了一百头牛庆功,故而还叫“百牛定理”.一个定理有如此多的“头衔”,可见勾股定理的不凡.设计意图通过拼图活动,充分调动学生的积极性,进一步激发学生的求知欲;通过借助不同图形探索证明,提高学生思维的活跃性;通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.3. 例题讲解(1)求下列图中字母所表示的正方形的面积22581B225400A(2)在直角三角形ABC中,C=90,A,B,C所对的边分别为a,b,c.A已知a=1,b=2,求c.ACBbacB已知a=10,c=15,求b.4.小结 师生共同回顾本节课所学主要内容:1.如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论