


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年级八科目数学教材版本人教版备 课 人张宏政课题、课时 18.2.1 矩形(一) 1课时授课班级802教学目标1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2会初步运用矩形的概念和性质来解决有关问题3渗透运动联系、从量变到质变的观点教学重点矩形的性质教学难点矩形的性质的灵活应用教学环节教学过程一、复习引入 1展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状 随着的变化,两条对角线的长度分别是怎样变化的? 当是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质二、新课讲解矩形性质1 矩形的四个角都是直角矩形性质2 矩形的对角线相等 如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半三、巩固应用例1已知:如图,矩形ABCD的两条对角线相交于点O,AOB=60,AB=4cm,求矩形对角线的长分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得OAB是等边三角形,因此对角线的长度可求解:四边形ABCD是矩形,AC与BD相等且互相平分OA=OB又 AOB=60, OAB是等边三角形 矩形的对角线长AC=BD = 2OA=24=8(cm) 例2(补充)已知:如图 ,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm求AD的长及点A到BD的距离AE的长分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法略解:设AD=xcm,则对角线长(x+4)cm,在RtABD中,由勾股定理:,解得x=6 则 AD=6cm(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AEDB ADAB,解得 AE 4.8cm 例3(补充) 已知:如图,矩形ABCD中,E是BC上一点,DFAE于F,若AE=BC 求证:CEEF 分析:CE、EF分别是BC,AE等线段上的一部分,若AFBE,则问题解决,而证明AFBE,只要证明ABEDFA即可,在矩形中容易构造全等的直角三角形 证明: 四边形ABCD是矩形, B=90,且ADBC 1=2 DFAE, AFD=90 B=AFD又 AD=AE, ABEDFA(AAS) AF=BE EF=EC 此题还可以连接DE,证明DEFDEC,得到EFEC随堂练习1(填空)(1)矩形的定义中有两个条件:一是 ,二是 (2)已知矩形的一条对角线与一边的夹角为30,则矩形两条对角线相交所得的四个角的度数分别为 、 、 、 (3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120,则矩形的边长分别为 cm, cm, cm, cm2(选择)(1)下列说法错误的是( ) (A)矩形的对角线互相平分 (B)矩形的对角线相等(C)有一个角是直角的四边形是矩形 (D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有( )(A)2对 (B)4对 (C)6对 (D)8对3已知:如图,O是矩形ABCD对角线的交点,AE平分BAD,AOD=120,求AEO的度数四、课堂小结本节课你学到了什么?1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2会初步运用矩形的概念和性质来解决有关问题3渗透运动联系、从量变到质变的观点五、课后作业1(选择)矩形的两条对角线的夹角为60,对角线长为15cm,较短边的长为( )(A)12cm (B)10cm (C)7.5cm (D)5cm2在直角三角形ABC中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年人民警察节活动训练学习心得与体会五篇
- 2025年教师招聘之《幼儿教师招聘》题库必背100题含答案详解(精练)
- 教师招聘之《幼儿教师招聘》综合提升测试卷及答案详解(典优)
- 2025年教师招聘之《小学教师招聘》通关提分题库及完整答案详解【各地真题】
- 教师招聘之《幼儿教师招聘》考试彩蛋押题附答案详解【模拟题】
- 教师招聘之《幼儿教师招聘》自测题库及参考答案详解(模拟题)
- 2025年教师招聘之《小学教师招聘》通关提分题库附答案详解【培优】
- 实商务英语综合教程(第一册)-课件 Unit 9 Business Environment
- 2025年新能源商用车辆在电力运输中的应用场景分析报告001
- 教师招聘之《幼儿教师招聘》练习题(一)附参考答案详解【典型题】
- 《工伤保险案例分析》课件
- 社区社会组织备案申请表
- 买卖合同法律知识及风险防范培训课件
- 婚恋关系的维系与发展艺术
- 2025年中国人保财险全系统江苏分公司招聘笔试参考题库含答案解析
- 个人黄金抵押合同范本
- 中试基地建设可行性研究报告
- 餐饮服务与数字化运营 习题及答案 项目四
- 《走近科学家》课件
- 《智慧物流与供应链基础》课件 ch1 概述
- 兽医临床诊疗技术绪论
评论
0/150
提交评论