在小学数学教学中培养学生的思维能力.doc_第1页
在小学数学教学中培养学生的思维能力.doc_第2页
在小学数学教学中培养学生的思维能力.doc_第3页
在小学数学教学中培养学生的思维能力.doc_第4页
在小学数学教学中培养学生的思维能力.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

在小学数学教学中培养学生的思维能力许珊娜知识是思维活动的结果,又是思维的工具。学习知识和训练思维既有区别,也有着密不可分的内在联系,它们是在小学数学教学过程中同步进行的。数学教学的过程,应是培养学生思维能力的过程。从具体的感性认识入手,积极促进学生的思维。在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。从新旧知识的联系入手,积极发展学生思维。数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从中得出:;。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数和另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。精心设计问题,引导学生思维。小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。进行说理训练,推动学生思维。语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。总之,小学数学教学的目的,不仅在于传授知识,让学生学习、理解、掌握数学知识,更要注重教给学生学习的方法,培养学生思维能力和良好的思维品质,这是全面提高学生素质的需要。设计开放型习题培养学生的思维能力开放型习题是相对有明确条件和明确结论的封闭式习题而言的,是指题目的条件不完备或结论不确定的习 题。 练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维,培养 能力。在教学过程中,除注意增加变式题、综合题外,适当设计一些开放型习题,可以培养学生思维的深刻性 和灵活性,克服学生思维的呆板性。 一、运用不定型开放题,培养学生思维的深刻性 不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条 件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。 如:学习“真分数和假分数”时,在学生已基本掌握了真假分数的意义后,问学生:ba是真分数,还是 假分数?因a、b都不是确定的数,所以无法确定ba是真分数还是假分数。在学生经过紧张的思考和激烈的争 论后得出这样的结论:当ba时,ba为真分数;当ba时, ba是假分数。这时教师进一步问:a、b可以是 任意数吗? 这样不仅使学生对真假分数的意义有了更深刻的理解,而且使学生的逻辑思维能力得到了提高。 又如,学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点 上出现错误,教师虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道 习题:“有两根同样长的绳子,第一根截去910,第二根截去910米,哪一根绳子剩下的部分长?”此题出 示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发 表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根 绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学 生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,最后得出如下结论:当绳子的长度是1米时 , 第一根的910等于910米,所以两根绳子剩下的部分一样长;当绳子的长度大于1米时,第一根绳子的 910大于910米, 所以第二根绳子剩下的长;当绳子的长度小于1米时,第一根绳子的910小于910 米 ,由于绳子的长度小于910米时,就无法从第二根绳子上截去910米,所以当绳子的长度小于1米而大于9 10米时,第一根绳子剩下的部分长。 这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解 题方法,培养了学生思维的深刻性,提高了全面分析、解决问题的能力。 二、运用多向型开放题,培养学生思维的广阔性 多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变 、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。 如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲队比乙队多修100米,乙队每天修35米,甲队 每天修多少米? 这道题从不同的角度思考,得出了不同的解法: 1、先求出乙队20天修的,根据全长和乙队20 天修的可以求出甲队20天修的,然后求甲队每天修的。 算式是(15003520)20 2、先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可以求出甲队20天修的,然后求甲队 每天修的。 算式是:(3520100)20 3、可以先求出两队平均每天共修多少米, 再求甲队每天修多少米。 算式是:15002035 4、可以先求出甲队每天比乙队多修多少米, 再求甲队每天修多少米。 算式是:1002035 5、假设乙队和甲队修的同样多,那么两队20天共修(1500100)米,然后求两队每天修的,再求甲队每 天修的。 算式是:(1500100)202 6、假设乙队和甲队修的同样多,那么两队20天共修(1500100)米,然后求甲队20天修的,再求甲队每 天修的。 算式是:(1500100)220 7、假设乙队和甲队修的同样多,那么两队20天共修(1500100)米,也就是甲队(202)天修的,由此 可以求出甲队每天修的。 算式是:(1500100)(202) 然后引导学生比较哪种方法最简便,哪种思路最简捷。 这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不 同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性。 三、运用多余型开放题,培养学生思维品质的批判性 多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析 条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养 学生思维的批判性。 如:一根绳子长25米,第一次用去8米,第二次用去12米, 这根绳子比原来短了多少米? 由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目 进行认真分析,错误地列式为:25812或25(812)。 做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多 少米,这里25米是与解决问题无关的条件,正确的列式是:812。 通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非 、去伪存真的鉴别能力。 四、运用隐藏型开放题,培养学生思维的缜密性 隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及 明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯和思维的缜密性 。 如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米? 解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:85,正确列式应为:8 52。 解此类题时要引导学生认真分析题意,找出题中的隐藏条件,使学生养成认真审题的良好习惯,培养学生 思维的缜密性。 五、运用缺少型开放题,培养学生思维的灵活性 缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。 如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米? 按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r, 那么正方形的 边长为2r, 正方形的面积为(2r)24r212,r23,所以圆的面积是3.1439.42(平方厘米)。 还可以这样想:把原正方形平均分成4个小正方形, 每个小正方形的边长就是所剪圆的半径,设圆的半径 为r, 那么每个小正方形的面积为r2,原正方形的面积为4r2,r2124,所剪圆的面积是3.14(12 4)9.42(平方厘米)。 通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。 解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问 题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参 与的积极性。谈新课程理念下优化数学课堂教学的几条措施学校教学中,课堂教学是全面培养学生素质和创新能力,提高教学质量的主阵地,那么如何建立并优化这块主阵地呢?笔者结合教学实践,谈几点措施。一、调动情感因素,唤发学习激情 列宁说过:“一个人的思想只有被浓烈的情感渗透时,才能得到力量,引起积极的注意、记忆、思考。”课堂是学生学习的主要场所,学习的本身除了认知因素之外,情感因素起着特别重要的作用。因而课堂教学中教师每一丝亲切的微笑,每一个鼓励的眼神,每一句温和的话语,每一个明确的手势都会触及学生学习的情绪,都可以促使学生放开胆子,亮开嗓子,都会诱发学生情感的积极投入。这一切又能促使教师与学生之间关系融洽、民主和谐,使大家无拘无束,尽情发挥主动作用,激起学习热情。有位同学,父母离异,给他精神上造成巨大的创伤,整日少言寡语,心情郁闷,课堂上听不进,作业完不成,学习日渐落后。于是,老师便以慈母般的爱心接近他,关怀他,帮助他,课堂上利用一切机会让他“表现”,并及时表扬,随机赞叹,抓住每一个“闪光点”进行激励,渐渐地,他对老师有了感情,又喜欢上了数学课,成绩也日渐进步。二、留给思考余地,增强自信心理 目前课堂教学中,我们经常会看到这样的情景:由于一些老师偏解了新课程的理念,学生一提出问题或教师出示思考题后,就立即组织学生讨论,不是同桌讨论就是小组合作,气氛显得异常热烈。有些思维敏捷的同学很快便要举手欲答,而绝大部分反应慢的同学还未来得及深思,脑中就灌满了别人的意见,久而久之,再遇难题时,他们便会附和于人,只听别人分析讲解或干脆不加思索,养成懒惰习惯,以致思维缓顿失去学习信心。因此,在教学过程中,一定要留有让学生独立思考的余地,然后再相机组织他们讨论。这样,使学生通过自己的思考而得到答案,或达到答案的“边缘”,都会给他们带来很大的快乐感,从而增强学习的信心。三、适时引导提问,培养问题意识 爱因斯坦说过:“提出问题,往往比解决问题更重要。”数学教学应重视培养学生的问题意识,培养学生敢想、敢说、敢问的精神。怎样引导学生提问,是优化课堂教学,培养创新精神而不可忽视的一环。1、借助揭示课题,引导学生提问。一节课,好的导入是教学成功的前提。因此,在新知导入时,要根据儿童的年龄特点和认知规律,可借助揭题,引导学生提问,以激起他们的求知欲。如教学“圆的认识”一课,在揭题后设问:“关于圆的认识,你们想提出什么问题吗?”学生会脱口提出:“怎样画圆?”“能求圆的周长和面积吗?”“圆有什么特征?”“圆在生活中有什么应用?”等等。这样借助揭题让学生提问,不仅能培养学生的问题意识,还能培养学生思维的创造性。2、利用自学机会,鼓励学生提问。学生自学时,教师要为学生指明学习的方向,以免出现应付式、盲目性的自学。如教学“年、月、日”一课时,老师说:“今天让你们自学课本,然后说说你懂得了年、月、日的哪些知识?有什么问题要问,好吗?”学生充分自学后,鼓励学生说说发现的问题。有的问:“为什么一年有12个月?”“为什么闰年比平年多一天?”“怎么计算一年的天数?”对此,教师不急于直接告知他们答案,而抓住重点知识讲解,再让他们讨论、计算、释疑。让全班学生都积极主动地参与学习过程,学生的自学能力、思维能力均得到了训练。四、加强学法指导,掌握学习方法 古人语:“授人以鱼,不如授之以渔。”培养现代学生的数学素质,不仅要求他们学会知识,更重要的是培养他们具有会学的能力。怎样指导学生的学习呢?1、指导学生领会例题编排意图,掌握学习方法小学数学教材中,每一新知识的教学基本上都有相应的例题,教学时要充分发挥这一优势,指导学生掌握自学例题的方法。如教材中很多例题的教学不是一步到位,而是分层逐步呈现解题过程,且留有不少需由学生填写内容的空格,要让学生根据解题思路自己去思考填写;有的例题旁附有虚、实色线框,要让学生明白线框的意图;有的例题有“想”的内容,要让学生知道这是思考过程;有的法则、概念、结语等用色字表示,要让学生清楚这是重点内容;有的例题中的示意图和操作程序是为突破难点安排的,要让学生懂得根据图示顺序去分析、推想,从而掌握数学学习的思考过程。2、指导学生运用渗透、迁移规律学习新知识的方法。数学教材的编排,前后知识联系比较紧密,几乎每一个新知识点的学习都是运用旧知迁移过来的。教学中必须十分重视训练学生养成利用渗透迁移规律学习新知的习惯。如:“圆柱的表面积计算” ,可要求学生根据长方形和圆的面积公式组合推导出圆柱表面积的计算方法。再如学过“通分”和“同分母分数相加减”之后,可要求学生尝试计算:1/2()1/5 (异分母分数加减),学生则能主动利用旧知,变异分母分数为同分母分数相加减进行计算。五、重视实践操作,引导自主探索 前苏联教育家苏霍姆林斯基说:“在人的心灵深处,有一个根深蒂固的需要,希望自己是一个发现者、研究者、探索者。”课堂上多让学生动手“摸一摸”、“量一量”、“剪一剪”、“拼一拼”不仅能满足学生好奇心的需要,更能促使学生于快乐活动中主动获取知识。如教学“平行四边形面积的计算”,课前可让学生准备两张同样大小的平行四边形纸片,课上让学生把其中一张沿着任意一条高将平行四边形剪拼成已学过的图形(长方形)。接着,引导学生观察、测量、比较,并讨论:1、剪拼后的长方形与原来的平行四边形的面积有什么关系?2、平行四边形的底与高和剪拼成长方形的长与宽有什么关系?3、你能根据长方形的面积公式推导出平行四边形的面积计算公式吗?通过这样的操作活动,使得每一个学生都能在亲身实践中探索得出:S平行四边形=底高。六、引进竞争意识,营造进取氛围 当今社会是竞争的社会,竞争已无处不在。课堂教学中适时采取竞争策略,可以促进群体参与,使课堂气氛活跃,激发学生积极进取。引进竞争意识的手段有:1、语言激励竞争。课堂上,教师运用激励性的语言进行教学,能促使学生积极思考。参与竞争。如“看谁最先想出来?”“看谁说得最好?”“看谁做得最好?”“看谁想得比他们更好?”“比比谁最聪明?”“看哪一组准确率最高?”等等。2、练习比赛激励竞争。个体练习比赛。练习时可设计A、B题组,A组是必做题,B组是选做题,让学有余力的学生完成A组题后争取完成。看全班谁完成B组题最多最好,练习后及时表扬、奖励。这样,既可让“吃不消”和“吃不饱”的两类学生各有所得,又能使他们积极进取,主动竞争。群体练习比赛。如以小组为单位进行小组接力赛练习。每人完成一道题,本组最后一个同学完成后将答卷交给老师,老师按送卷顺序先后编号,根据运算速度和答卷正确率评出优胜组。教学实践证明,要想让每一个学生都能在课堂上想学会学学会,优化课堂教学是一条“捷径”,也是教改之路上一个永恒不变的追求目标。谈新课程理念下优化数学课堂教学的几条措施学校教学中,课堂教学是全面培养学生素质和创新能力,提高教学质量的主阵地,那么如何建立并优化这块主阵地呢?笔者结合教学实践,谈几点措施。一、调动情感因素,唤发学习激情 列宁说过:“一个人的思想只有被浓烈的情感渗透时,才能得到力量,引起积极的注意、记忆、思考。”课堂是学生学习的主要场所,学习的本身除了认知因素之外,情感因素起着特别重要的作用。因而课堂教学中教师每一丝亲切的微笑,每一个鼓励的眼神,每一句温和的话语,每一个明确的手势都会触及学生学习的情绪,都可以促使学生放开胆子,亮开嗓子,都会诱发学生情感的积极投入。这一切又能促使教师与学生之间关系融洽、民主和谐,使大家无拘无束,尽情发挥主动作用,激起学习热情。有位同学,父母离异,给他精神上造成巨大的创伤,整日少言寡语,心情郁闷,课堂上听不进,作业完不成,学习日渐落后。于是,老师便以慈母般的爱心接近他,关怀他,帮助他,课堂上利用一切机会让他“表现”,并及时表扬,随机赞叹,抓住每一个“闪光点”进行激励,渐渐地,他对老师有了感情,又喜欢上了数学课,成绩也日渐进步。二、留给思考余地,增强自信心理 目前课堂教学中,我们经常会看到这样的情景:由于一些老师偏解了新课程的理念,学生一提出问题或教师出示思考题后,就立即组织学生讨论,不是同桌讨论就是小组合作,气氛显得异常热烈。有些思维敏捷的同学很快便要举手欲答,而绝大部分反应慢的同学还未来得及深思,脑中就灌满了别人的意见,久而久之,再遇难题时,他们便会附和于人,只听别人分析讲解或干脆不加思索,养成懒惰习惯,以致思维缓顿失去学习信心。因此,在教学过程中,一定要留有让学生独立思考的余地,然后再相机组织他们讨论。这样,使学生通过自己的思考而得到答案,或达到答案的“边缘”,都会给他们带来很大的快乐感,从而增强学习的信心。三、适时引导提问,培养问题意识 爱因斯坦说过:“提出问题,往往比解决问题更重要。”数学教学应重视培养学生的问题意识,培养学生敢想、敢说、敢问的精神。怎样引导学生提问,是优化课堂教学,培养创新精神而不可忽视的一环。1、借助揭示课题,引导学生提问。一节课,好的导入是教学成功的前提。因此,在新知导入时,要根据儿童的年龄特点和认知规律,可借助揭题,引导学生提问,以激起他们的求知欲。如教学“圆的认识”一课,在揭题后设问:“关于圆的认识,你们想提出什么问题吗?”学生会脱口提出:“怎样画圆?”“能求圆的周长和面积吗?”“圆有什么特征?”“圆在生活中有什么应用?”等等。这样借助揭题让学生提问,不仅能培养学生的问题意识,还能培养学生思维的创造性。2、利用自学机会,鼓励学生提问。学生自学时,教师要为学生指明学习的方向,以免出现应付式、盲目性的自学。如教学“年、月、日”一课时,老师说:“今天让你们自学课本,然后说说你懂得了年、月、日的哪些知识?有什么问题要问,好吗?”学生充分自学后,鼓励学生说说发现的问题。有的问:“为什么一年有12个月?”“为什么闰年比平年多一天?”“怎么计算一年的天数?”对此,教师不急于直接告知他们答案,而抓住重点知识讲解,再让他们讨论、计算、释疑。让全班学生都积极主动地参与学习过程,学生的自学能力、思维能力均得到了训练。四、加强学法指导,掌握学习方法 古人语:“授人以鱼,不如授之以渔。”培养现代学生的数学素质,不仅要求他们学会知识,更重要的是培养他们具有会学的能力。怎样指导学生的学习呢?1、指导学生领会例题编排意图,掌握学习方法小学数学教材中,每一新知识的教学基本上都有相应的例题,教学时要充分发挥这一优势,指导学生掌握自学例题的方法。如教材中很多例题的教学不是一步到位,而是分层逐步呈现解题过程,且留有不少需由学生填写内容的空格,要让学生根据解题思路自己去思考填写;有的例题旁附有虚、实色线框,要让学生明白线框的意图;有的例题有“想”的内容,要让学生知道这是思考过程;有的法则、概念、结语等用色字表示,要让学生清楚这是重点内容;有的例题中的示意图和操作程序是为突破难点安排的,要让学生懂得根据图示顺序去分析、推想,从而掌握数学学习的思考过程。2、指导学生运用渗透、迁移规律学习新知识的方法。数学教材的编排,前后知识联系比较紧密,几乎每一个新知识点的学习都是运用旧知迁移过来的。教学中必须十分重视训练学生养成利用渗透迁移规律学习新知的习惯。如:“圆柱的表面积计算” ,可要求学生根据长方形和圆的面积公式组合推导出圆柱表面积的计算方法。再如学过“通分”和“同分母分数相加减”之后,可要求学生尝试计算:1/2()1/5 (异分母分数加减),学生则能主动利用旧知,变异分母分数为同分母分数相加减进行计算。五、重视实践操作,引导自主探索 前苏联教育家苏霍姆林斯基说:“在人的心灵深处,有一个根深蒂固的需要,希望自己是一个发现者、研究者、探索者。”课堂上多让学生动手“摸一摸”、“量一量”、“剪一剪”、“拼一拼”不仅能满足学生好奇心的需要,更能促使学生于快乐活动中主动获取知识。如教学“平行四边形面积的计算”,课前可让学生准备两张同样大小的平行四边形纸片,课上让学生把其中一张沿着任意一条高将平行四边形剪拼成已学过的图形(长方形)。接着,引导学生观察、测量、比较,并讨论:1、剪拼后的长方形与原来的平行四边形的面积有什么关系?2、平行四边形的底与高和剪拼成长方形的长与宽有什么关系?3、你能根据长方形的面积公式推导出平行四边形的面积计算公式吗?通过这样的操作活动,使得每一个学生都能在亲身实践中探索得出:S平行四边形=底高。六、引进竞争意识,营造进取氛围 当今社会是竞争的社会,竞争已无处不在。课堂教学中适时采取竞争策略,可以促进群体参与,使课堂气氛活跃,激发学生积极进取。引进竞争意识的手段有:1、语言激励竞争。课堂上,教师运用激励性的语言进行教学,能促使学生积极思考。参与竞争。如“看谁最先想出来?”“看谁说得最好?”“看谁做得最好?”“看谁想得比他们更好?”“比比谁最聪明?”“看哪一组准确率最高?”等等。2、练习比赛激励竞争。个体练习比赛。练习时可设计A、B题组,A组是必做题,B组是选做题,让学有余力的学生完成A组题后争取完成。看全班谁完成B组题最多最好,练习后及时表扬、奖励。这样,既可让“吃不消”和“吃不饱”的两类学生各有所得,又能使他们积极进取,主动竞争。群体练习比赛。如以小组为单位进行小组接力赛练习。每人完成一道题,本组最后一个同学完成后将答卷交给老师,老师按送卷顺序先后编号,根据运算速度和答卷正确率评出优胜组。教学实践证明,要想让每一个学生都能在课堂上想学会学学会,优化课堂教学是一条“捷径”,也是教改之路上一个永恒不变的追求目标。在数学教学中培养学生的创新精神教育要以培养学生的创新精神和实践能力为重点。小学数学是基础教育的基础学科,是培养与提高人的文化素质和科学素质的重要组成部分,具有高度的抽象性、严密的逻辑性和广泛的应用性。小学教师应站在面向世界、面向未来的高度,塑造学生创新个性,强化学生的创新意识,发展学生的创新思维。我们要千方百计地激“活”学生主体,把学习的主动权交给学生,尽量让它们去发现,去探索,去创新。如何在小学数学课堂教学中培养学生的创新精神呢?我的做法是:创设情境,尝试探索,发散思维。一、创设情境 教学成功与否,学习效果如何,取决于全体学生的有效参与程度。主动参与是培养学生创新意识的内动力,让学生主动参与,教师要为学生创设民主的学习情境,营造和谐的学习氛围,架设学习的桥梁,提供思考的空间,把学习的主动权还给学生,让学生通过自身的努力,掌握知识,形成技能,发展特长,提高素质。例如:课始老师的导入:小熊给小朋友们寄来了一封信,寄给谁了呢?请大家找一找。小朋友们兴趣骤起,纷纷寻找。老师请找到信的同学打开读一读,新的教学内容就此展开了。 多妙的开头啊!vvvv教学过程中,老师承接前一项训练内容,说:小朋友玩得正高兴,突然天色昏暗,眼见就要下雨了。这时小白兔来了,带来了很多伞,他的伞可不是卖的,而是送给做对题目的小朋友的。 学生纷纷抢着做题,多好的故事渲染啊! 多媒体传真:小猫亲切的叫卖声:卖苹果,卖苹果咯!小鸟飞来了,说:我买9个,小朋友,请你帮小猫算一算,还剩几个?浓厚的生活情趣,一下子把学生吸引住了。而且这样在解答问题时充分调动了学生的积极性,学生兴趣盎然,思维也活跃了。二、尝试探索 教师为主导,学生为主体,教师要放手让学生应用已有的知识、经验主动去探索并尝试学习新知识。新课程的目标要求就是一个很好的指导。在教学中要放手让学生自己获得知识,尝试、探索。如在教学进位加法35+7= 这节课时,通过“提出问题,设计方案”、“实验、探索”、“验证、运用”四个步骤,组织学生创造性地学习。学生凭借从已知到未知的学习体会,设计出三个层次的研究方案:(1)用小棒摆一摆,用数学具的方法完成计算。(2)小组协作讨论,探索计算的方法。35+7=5+7+30=4235+7=35+5+2=4235+7=35+10-3三、发散思维 在小学数学教学中,练习是数学知识巩固和技能提高的重要环节,大量地重复练习会加重学生的学习负担,而合理必要的练习会使学生获得真知,兴趣盎然。这就要求教师精心设计数学练习题,逐步培养学生的创新意识和创新能力。在教学中,我十分重视学生的思维过程,重视创新能力的思维发散训练,提供学生思考的空间。把同一个问题作多种思考,不拘泥于教材提供的解题思路。如:在中填上适当的数:1252,学生根据已有知识,可以由“加法想减法”等一些逆向思维方法来解决。当然,也同样鼓励学生的其他解决方法。总而言之,在解法上鼓励学生标新立异,引导学生发表不同的见解,这样学生的创新欲望就会更强烈。 总之,在课改中教师只有在教学过程中不断创造条件,点燃学生创造思维的火花,并加以正确引导训练,学生的创造性思维才能变得越来越活跃,越来越独特,而这真是创造性思维所具有的灵活、流畅、新颖的特点,只有这样,学生的创造性思维才能不断得到发展。在小学数学教学中培养学生的思维能力知识是思维活动的结果,又是思维的工具。学习知识和训练思维既有区别,也有着密不可分的内在联系,它们是在小学数学教学过程中同步进行的。数学教学的过程,应是培养学生思维能力的过程。从具体的感性认识入手,积极促进学生的思维。在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。从新旧知识的联系入手,积极发展学生思维。数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从中得出:;。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数和另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。精心设计问题,引导学生思维。小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。进行说理训练,推动学生思维。语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。总之,小学数学教学的目的,不仅在于传授知识,让学生学习、理解、掌握数学知识,更要注重教给学生学习的方法,培养学生思维能力和良好的思维品质,这是全面提高学生素质的需要。小学数学教学中发散思维的培养陈碧思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。激发求知欲,训练思维的积极性。思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维的极其重要的基矗在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在一年级乘法初步认识一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,虽然是一年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。转换角度思考,训练思维的求异性。发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如可以连续减多少个?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作里包含几个,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。一题多解、变式引伸,训练思维的广阔性。思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。转化思想,训练思维的联想性。联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练。总之,在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。提高小学数学课堂教学效率的基本要求汪涛课堂教学,作为教学的一种基本形式,如果从夸美纽斯(1597-1670年)数起,迄今已有300多年的历史,因其优越性而为人们所普遍接受和采用。而且无论是现在,还是将来,课堂都是学校教学的主阵地,数学教学的主要目标都必须在课堂中完成。因而如何提高小学数学课堂教学效率一直是大家所关心的问题,笔者认为,提高数学课堂教学效率,虽然不可能找到固定的模式,但是可以提出几项基本要求,以期引起大家的重视。一、教学观念现代化实践证明:教学观念直接影响课堂教学效率,教学观念不解决,再好的教材,再完善的教学方法,使用起来也会“走样”。传统的教学观认为:教学就是教师教,学生学,教师讲,把学生当作消极、被动地接受知识的容器。现代的教学观认为:教学就是教师有效、合理地组织学生的学习活动,使所有的学生都能学好,学得主动、生动活泼。要提高数学课堂教学效率,必须转变传统的教学观念,建立符合现代教学观的崭新体系,努力做到“五个转变”和确立“四种教学观”。“五个转变”是指:由单纯的“应试教育”转变为全面的素质教育;由“填鸭式”的教学方法转变为启发式的教学方法;由局限于课堂的封闭教学转变为课堂内外相结合的开放性教学;由单纯传授知识的教学转变为既传授知识,又发展能力的教学;由教学方法的“一刀切”转变为因材施教。“四种教学观”是指在数学教学过程中要确立如下四种观念:整体观。即是用整体观点指导课堂教学,从整体上进行数学教学改革,充分发挥课堂教学中各种因素(教师、学生、教材等)的积极性,使它合理组合,和谐发展,实现课堂教学整体优化;重学观。就是要求教者重视学法指导,积极地把“教”的过程转化为“学”的过程;发展观。不但要引导学生有效地学习,更重要的要培养能力,发展智力;愉快观。要把愉快因素带进课堂,让学生在轻松愉快的课堂氛围中获取知识。二、数学目标明确化教学目标是教学大纲的具体化,是教材所包含的知识因素和能力训练的具体要求,是评估教学质量的依据。教学目标决定着教学活动的方向,决定着教学内容、方法、途径的选择,决定着教学效率的提高。在数学课堂教学中,如果目标制定明确,便能发挥如下功能:对指引师生的教与学,有定向功能;对教改程序的有效进行,有控制功能;对知识与能力的双向发展,有协调功能;对减轻学生因题海战术而盲目训练所造成的负担,有效率功能;对教改工作的科学评价和管理,有竞争功能;对统一标准大面积提高教学质量,有稳定功能。由此可见,要提高数学课堂教学效率,就应制定完整、明确的课堂教学目标,注意根据教材内容定出基础知识、基本能力、思想感情教育等项的达标要求。例如教学分数的初步认识,可制定如下教学目标:基础知识方面:结合直观图形理解几分之一的含义;认识分数各部分的名称,掌握分数的读法和写法;基本能力方面:能应用分数表示图形里的阴影部分,能在图中画出阴影部分来表示分数,在数线上标出一定的分数;思想情感教育方面:培养起学生学数学的兴趣、自觉性和克服困难的意志。并且把这些相互促进、相互制约的各项要求组成一个整体,做到在教基础知识的同时培养能力,发展智力。这样就能使学生在知识、能力、思想情感教育三个方面得到协调发展,全西完成课堂教学任务,收到良好的教学效果。三、教学方法科学化教学方法是师生为达到教学目的、实现教学目标而相互结合的活动方式,其中包括教师的教法和学生的学法,而学生的学法实际上是教师指导下的学习方法。教法制约学法,并给课堂教学效率带来重要影响。因此,教师选择教学方法要科学、合理,注意体现如下四个原则:启发性原则、生动性原则、自主性原则和因材施教原则。启发性原则是指方法要善于激发学生学习主动性,启发学生积极思维;生动性原则是指方法要富有艺术性,具有强烈的吸引力和感染力;自主性原则是指方法要让学生主动参与,充分体现学生的主体地位;因材施教原则是指方法要处理好全体和个别的关系。课堂教学方法多种多样,不同的内容、不同的课型,教法就不同。目前,一 节课中只采用一种教法的极少,同时单一地运用某一教法,也不利于学生智能的发展。因此,在数学教学中要将各种教法进行最佳组合,做到灵活多样、富有情趣,具有实效,并能体现时代的特点和教者的风格。只有这样才能使教学方法科学化,提高教学效率。四、教学手段多样化教学手段是实现教学目标的主要措施。传统的数学教学,从概念到概念,教师单靠粉笔和黑板讲解,势必影响大面积提高小学数学教学质量和学生的素质提高。因此,要提高课堂教学效率,必须注意教学手段的多样化。多媒体教学体现了教学手段的多样化。因为它合理地继承了传统的教学媒体(如课本、教师课堂语言、板书、卡片、小黑板等),恰当地引进了现代化教学媒体(如幻灯、投影、录音、电视、磁性黑板、电脑图象等),使二者综合设计、有机结合,既能准确地传导信息,又能及时地反馈调节,构成优化组合的媒体群。这样能使学生视、听触角同时并用,吸收率高,获得的知识灵活、扎实,从而提高了课堂教学效率。五、课堂结构高效化现代教学论认为:应变“教”的课堂结构为“学”的课堂结构,变课堂为学堂。据报载,美国中小学校的许多教师每节课只讲10分钟,剩下的时间让学生相互交流、提问、消化,教师引导、释疑、解惑。无独有偶,国内已有很多学校要求教师一节课最多只讲15分钟,其余的时间让学生“自由选择”,教学效果也很不错。不同的课型有各自的基本结构模式,同一课型的结构模式,也会因教学指导思想的不同、客观教学条件的变化而变化。课堂结构高效化并不一定是大容量、快节奏和高要求,一个有活力的、高效化的课堂结构,必须具备如下六个因素:构成一个“环环紧扣、层层入深、步步有新、相互促进”的有机整体;教师对教学内容的处理与学生原有的认识结构相适应;学生主动、积极参与的程度;学生当堂练习的数量和质量;课堂信息反馈畅通的程度,能否做到及时反愧及时调节;充分有效地利用课堂教学时间。六、基本训练序列化小学数学课堂教学中一条成功的经验是加强双基(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论