![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】卡尔曼滤波器介绍-中文翻译_第1页](http://file.renrendoc.com/FileRoot1/2017-12/1/317b8556-5386-47e3-b6e6-49c1829b9cff/317b8556-5386-47e3-b6e6-49c1829b9cff1.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】卡尔曼滤波器介绍-中文翻译_第2页](http://file.renrendoc.com/FileRoot1/2017-12/1/317b8556-5386-47e3-b6e6-49c1829b9cff/317b8556-5386-47e3-b6e6-49c1829b9cff2.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】卡尔曼滤波器介绍-中文翻译_第3页](http://file.renrendoc.com/FileRoot1/2017-12/1/317b8556-5386-47e3-b6e6-49c1829b9cff/317b8556-5386-47e3-b6e6-49c1829b9cff3.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】卡尔曼滤波器介绍-中文翻译_第4页](http://file.renrendoc.com/FileRoot1/2017-12/1/317b8556-5386-47e3-b6e6-49c1829b9cff/317b8556-5386-47e3-b6e6-49c1829b9cff4.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】卡尔曼滤波器介绍-中文翻译_第5页](http://file.renrendoc.com/FileRoot1/2017-12/1/317b8556-5386-47e3-b6e6-49c1829b9cff/317b8556-5386-47e3-b6e6-49c1829b9cff5.gif)
免费预览已结束,剩余10页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
卡尔曼滤波器介绍 摘要 在 1960 年, R.E.Kalman 发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高, Kalman 滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。 Kalman 滤波器是一套数学等式,它提供了一种有效的以最小均方误差来估计系统状态的计算 (递归的 )方法。它在以下几方面是非常强大的:它支持过去、现在、甚至将来估计,甚至在系统准确模型也未知的情况下。 本文的目的是提供一种对离散的 Kalman 滤波器的实用介绍。 这些介绍包括对基本离散 kalman 滤波器、起源和与之相关的简单的带有真实数字和结果的描述和讨论。 1、离散的 kalman 滤波器 在 1960 年, R.E.Kalman 发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高, Kalman 滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。关于 kalman 滤波器一般方法的友好介绍可以在 maybeck79的 Chapter.1 中找到,但是更完整部分的讨论能在 Sorenson70中发现,它还包括许多有趣的历史解释。在 Gelb74; Grewal93; Maybeck79; Lewis86; Brown92; jacobs93中有更多参考。 1.1 估值过程 Kalman滤波器解决估计离散时间控制过程的状态 X Rn的一般性问题,定义线性随机差分方程 其中,测量值 Z Rm,定义为 随机变量 WK 和 VK 各自表示系统噪声和测量噪声,我们假定它们为相互独立的、白噪声且为正常概率分布 在实际中,系统噪声协方差矩阵 Q 和测量噪声协方差矩阵 R 可能随过程和测量时间而改变,无论怎样,我们在这里假定它们是常量。 在差分方程( 1.1)中, nn阶矩阵 A与前一时刻( K 1)和当前时刻 K相关,这里缺少传递函数或系统噪声。注意的是,在实际中, A可能随各自时刻改变,但这里我们假定其为常量, nl阶矩阵 R与非强制性输入 U Rl和状态 x有关,在测量公式( 1.2)中, mn阶矩阵 H与状态及测量值 ZK有关,在实际中,H可能随各自过程或测量时刻而改变, 这里假定它们是常数。 1.2 滤波器计算初步 我们定义 XK Rn(注意负号)为 k时刻及系统 k时刻以前数据的 priori状态估计,定义 XK Rn在得到测量值 ZK的 k时刻的 posteriori状态估计。我们这时定义前后两状态的估计误差为 这时 priori估计协方差为 并且 posteriori估计协方误差为 在推导 kalman滤波器方程时,我们开始找到 Posteriori状态估计 XK与 priori估计 XK 和实际测量值 ZK与预测值 Hxk 之差的加权的线性组合的公式,如式( 1.7)。对于( 1.7)的一些调整在下面的“滤波器的概率初步”中给出。 式( 1.7)中( ZK Hxk)的差叫测量协方差或叫余数,这余数反映的是预测值 Hxk与实际值 Zk的不合。一个零余数意味着这两个数完全一致。 式( 1.7)中 nm阶矩阵选择 Posteriori协方误差的最小增益或混合因子,这最小值可以获得:首先代式( 1.7)到上面定义的 ek ,代入到( 1.6)中,得到期望值,然后然后推导期望结果 K的迹,并设其为 0,最后解得 K。对于 更详细的看 Maybeck79; Brown92; Jacobs93。最小化式( 1.6)的结果 K的一种形式下 从( 1.8)中,我们可以看到测量均方误差 R趋于 0时,增益 K加权余数会越大,尤其 另一方面,当 Priori估计协方误差 PK 趋于 0时,增益 k加权余数越小,尤其 考虑加权 K的另一种方法:当测量协方误差 R趋于 0时,真实测量值 ZK越来越真实,这时,预测值 Hxk 越来越不真实,另一方面,当 Priori估计协方误差 PK 趋于 0时,真实测量值 Zk越来越不真实,预测值 Hxk 越来越不真实。 1.3滤波器概率初步 式( 1.7)的调整来源制约于在先前测量值 ZK( Bayes准则)上 Priori估计 XK 的概率。此时,我们足够指出: Kalman滤波器保持了分布状态的一、二阶矩。 式( 1.7)的 Posteriori状态估计反映了分布状态的均值(一阶矩) 这是在条件( 1.3)和( 1.4)同时满足的自然分布。 Posteriori估计协方误差( 1.6)反映分布状态的变化(二阶非中心矩),换之, 对于 Kalman滤波器的更详细的概率初步,可以参考 Maybeck79;Brown92; Jacobs93。 1.4离散 Kalman滤波器算法 我们从大体概述了一种包含离散 Kalman滤波器形式的高级算法来开始这部分(看以前脚注)。在描述完它的高级目的之后,我们将在滤波器的本文集中到特定的公式和应用。 Kalman滤波器是用反馈控制的形式来估计过程:在当时滤波器估计过程状态,然后在噪声测量值时获得反馈。比如, Kalman滤波器的等式有两组: time update等式和 measurement update等式。这 time update等式是当前状态之前的过程和获得下一个时刻的 Priori状态的估计协方误差。这 measurement update等式反映的是反馈。如伴有新测量值的 Priori状态估计和获得提高的 Posteriori估计的组合。 当 measurement update被作为修正方程时, time update也被作为原始等式。确实,最后的估计算法与解决数字问题的预测修正算法相似,如下 Figure 1-1所示 Figure 1-1 不间断离散 Kalman滤波器循环, Time update适时计算当前状态估计。 Measurement update在那时通过真实测量值来调整设计估计。 在 Table 1-1和 Table 1-2表示暂态和稳态方程 再次注意,在 Table 1-1计划中,无论 Time update方程如何,状态和协方差估计从 K-1状态到 K状态。当 Q来自式( 1.3)是, A和 B来自式( 1.1)。滤波器的内部条件在早先的参考书中已经讨论了。 在 Measurement update期间,最初任务是计算 Kalman滤波器的增益 Kk。注意的是,当式( 1.11)和( 1.8)相同时,等式已经给出。下一步是根据真实计算过程来获得 Zk。然后通过式( 1.12)合并测量值来生成 Posteriori状态估计。式( 1.12)在这里是式( 1.7)的完全重复。最后通过式( 1.13)来获得 Posteriori估计协方误差。 每次 Time update和 Measurement update成对后,系统重复用以前的 Posteriori估计过去计划或预测的新的 Priori估值。这递归的本质是 Kalman滤波器的一大特色 它的实际应用比设计每次操作直接数据的 Wiener滤波器的应用更为有效 Brown92。在过去所有过去测量值的基础上 Kalman滤波器递归的代替当前估计。下面的 Figure 1-2提供了滤波器操作的完整图片,从 Table 1-1和 Table 1-2组合成前面图表 Figure 1-1。 1.5滤波器参数和调整 在滤波器的实际应用中,测量噪声协方差 R通常先于滤波器操作之前测量。测量值协方误差 R一般是实际的(可能的)因为我们能够测量过程,无论如何(当运行滤波器)为了决定测量噪声的变化我们一般能够得到离线例子测量值。 系统噪声协方误差 Q的测定一般是很困难的,因为我们不能直接得到观测估计过程。有时候相关简单的系统模型能产生可能的结果,如果通过选择 Q它注入足够不确定进入过程。的确,在这种情况下,我们希望系统测量值是可信的。 在另一种情况,无论我们是否选择一个有理数参数,时间前级滤波器参数(统计说)通过调整滤波器参数 Q和 R便能得到。这个调整经常离线操作,通常的在系统中,另一种(明显的) Kalman滤波器一般参考系统鉴定。 Figure 1-2 Kalman滤波器操作的完整图片, Table 1-1和 Table 1-2组合成前面图表 Figure 1-1。 在结束时,我们注意在 Q和 R是常数的条件下,估计协方误差 PK和 Kalman增益 KK将快速稳定,然后保持常量(看 Figure 1-2滤波器修正公式)。如果这种场合,这些参数能在 Grewal93中通过离线运行滤波器或决定 PK的稳态值来提前计算。 测量协方误差(特别的)不能保持常数是通常情况。例如,当在我们的光电跟踪面板看到信号是,在靠近信号的测量值比远离信号的测量噪声将更小。同样,系统噪声 Q在滤波操作 变成 Qk期间为了调整动态差有时候也会动态的改变。例如,在跟踪虚拟环境的使用过程情况下,如果目标移动慢,我们能够减小 QK的量值,如果动态变化快,我们增加量值。在这种情况下, QK能够选择计算不确定的用户目的和用户模型。 2、扩展的 Kalman滤波器( EKF) 2.1估值系统 正如上一节的描述, Kalman滤波器解决估计离散时间控制过程的状态 XRn的一般性问题,定义线性随机差分方程。但是如果被估值系统或系统的测量值关系是非线性的,会发生什么变化呢?许多 Kalman滤波器重要的或成功的应用已用于这种情况。线性 Kalman滤波器的当前均值和协方差可以作为 EKF的参考。 在类似 Taylor级数的时候,即使是非线性关系时我们也能围绕当前估计,通过系统的部分推导公式和测量公式计算估计来把估值线性化。为了如此,我们在本部分必须修改一些重要描述。我们再次假定系统有一个状态矢量 X Rn,但是,这个系统现在被定义为非线性随机差分方程。 其中, 测量值 Z Rm,定义为 这里,随机变量 WK和 VK再次表示系统噪声和测量噪声。正如式( 1.3)和( 1.4) 一样。在这种情况下,在差分方程式( 2.1)中,线性函数 f与上时刻状态 K-1和当前时刻状态 K有关。它包括驱动函数 UK-1和零均值系统噪声 Wk的参数。在测量等式( 2.2)中,非线性函数 h与状态 XK和测量值 ZK有关。 在实际过程中,我们不知道每个时刻的 WK和 VK的独立值,然而,我们可以在没有 WK和 VK的状态下近似状态矢量和测量矢量,如下 这里, Xk是 Posteriori估计状态(从上一个时刻 K开始) 。 重点注意: EKF和基本缺陷是在遭到各自非线性变换后,不同的随机变量的分布(连续情况下的密度)不再正常。在 EKF是简单的接近线性最佳 Bayes公式的特殊状态估值。 Julier et al.已经通过用非线性变换来优质正常分布来了发展了 EKF变量 Julier96 2.2滤波器计算初步 为了估计非线性系统差分值和测量值的关系,我们重新写线性估计式( 2.3)和 (2.4)方程的控制方程 , 这里 XK和 ZK是真实状态和测量矢量 , XK和 ZK是由式 (2.3)和 (2.4)而得到近似状态和测量值矢量 , XK是 K时刻的 Posteriori估计状态 , 随机变量 WK和 VK表示在 (1.3)和的 (1.4)的系统噪声和测量噪声 , A是关于 X的由 f 部分派生的 Jacobian矩阵 ,定义为 W是关于 w 的由 f 部分派生的 Jacobian矩阵 ,定义为 H是关于 X的由 h 部分派生的 Jacobian矩阵 ,定义为 V是关于 v 的由 h 部分派生的 Jacobian矩阵 ,定义为 在这种情况下 ,简单注意 ,我们不能用 Jacobians的 A, W, H,的时间下标,即使在各自时刻真正不同。 现在我们为预测误差定义一个新符号, 和测量余数, 记得,在实际中,式 2.7不能接近 k,它便是真实状态矢量,例如,要估计的量。另一方面,式 2.8不能接近 k,它是用 Xk估计真实测量值。用式( 2.7)和( 2.8)我们能写系统误差的控制方程,如下 这里, k和 k表示新的有零均值和协方差 WQWT和 VRVT并同带有 Q和 R的式( 1.3)和式( 1.4)一样的独立随机变量。注意的是等式( 2.9)和等式( 2.10)是线性的,从离散 Kalman滤波器我们得到真得得到类似的差分方程和测量等式( 1.1)和( 1.2)。这种激励在式( 2.8)用真实测量值余数 Ezk和第二(假定的) Kalman滤波器来估计预测误差 Exk由式( 2.9)给出,然后这叫 EK测量能连同式( 2.7)被用来获得原始非线性系统的 Posteriori状态估计,如下 式( 2.9)和( 2.10)的随机变量有近似的下面可能的分布(看以前脚注): 给定一些 ek的近似值和预测值为 0,用来估计 ek的 Kalman滤波器等式是 把式( 2.12)代回( 2.11) ,利用( 2.8) ,我们可以看到,实际不用两个Kalman 滤波器。 式( 2.13)在扩展的 Kalman 滤波器中用作 Measurement update,其中 XK和 ZK 来源于式( 2.3)和式( 2.4) , Kalman 增益 KK 来自带有测量协方差的特有代替式( 1.11) 。 EKF 完整等式如下 Talble 2-1 和 Table 2-2 所示。注意,我们用 Xk 代替Xk,并且保持了与以前上标负号的一致。现在我们给 Jacobians A, W, H,V,附加下标 k 来标注他们在各个时刻的不同。 如同基本的离散 Kalman 滤波器,在 Table2-1 中的 Time update 等式计算从前一时刻 K-1 到当前时刻 K 的估计状态和协方差。此外,式( 2.14)的 f 来源于式( 2.3) , Ak 和 Wk 是 K 时刻的系统 Jacobians, QK 是 K 时刻的系统噪声协方差。 如同基本离散 Kalman 滤波器, Table 2-2 中 Measurement update 等式修正了测量值 Zk 的估计状态和协方差。此外,式( 2.17)的 h 来自式( 2.4) , Hk和 V 是 K 时刻的测量值 Jacobians, Rk 是测量噪声协方差(注意,现在 R 的下标允许随每个测量值而改变) 。 EKF 的基本算法同线性离散 Kalman 滤波器 Figure 1-1 所示的一样,下面的合并了前面表格 Figure 1-1 和 Table 2-1 和 Table 2-2 等式的 Figure 2-1 提供了EKF 算法的完整描述。 Figure 2-1 合并了高级表格 Figure1-1 和 Table2-1 和 Table2-2 等式的 EKF 的完整描述 EKF 的重要特征是正常增大或放大相关测量数据的 Kalman 增益 Kk 等式中的 Jacobians。例如,如果测量值 Zk 和测量状态通过 h 不是一对一的映射,JacobianHk 将影响 Kalman 增益,以致于糨仅仅放大了影响因素的 XK-h(XK,0)余数的部分。当然,如果测量值 Zk 和测量状态通过 h 都不是一对一的映射关系,你可以很快预测到滤波器是发散的,这种情况是不可观测的。 3、 Kalman 滤波器的应用:估计随机常量 在前两节中,我们描述了离散 Kalman 和扩展 Kalman 滤波器的基本形式,为了更好的了解滤波器的运算和性能,我们在这里举一个简单的例子。 3.1 系统模型 在这个简单例子中,我们估计一个随机常标量,例如,电压。假设,我们能够获得测量常数,但是测量值是被均方根为 0.1 的白噪声破坏(例如,从模拟到数字转换是不准确的) 。在这个例子中,系统为线性差分方程 其中,测量值 ZK Rl,并定义: 在种状态不随时刻而变化,因此 A=0。这里没有控制输入,因此 u 0。噪声测量值为直接状态,于是 H=1。(注意,我们在许多地方没有考虑下标,这是因为在简单模型中,各参数均为常数) 3.2滤波器等式和参数 Time update 等式为 和 Measurement update 等式为 假设一个很小的系统变化,我们使 Q=1e-5。 (我们能够确定 Q=0,但是为了更好的调整滤波器,假定一个很小但又不为 0 的值,下面我们会给出证明) 。根据经验知道,随机常量的真实值有标准自然概率分布,于是我们定义滤波器常量为 0,换句话说,工作前,我们使 Xk-1=0。 类似的,我们需要选择 Pk-1 的初始值,如果我们完全确定初始化状态估计X0 0 是正确的,那么 P0=0。然而,初始估计 X0 是不确定的,选择 P0=0 能起滤波器初始化和使 Xk=0。于是证明,二者的选择是临界的,我们能够选择任何P00,最终,滤波器是收敛的,我们以 P0=1 开始。 3.3 仿真 开始,我们随机选择一个标量 Z 0.37727。 ( Z 不是“ hat”,因为它表示真实值) 。然后,我们模拟 50 个不同的标准偏差为 0.1 的零自然误差分布的测量值 Zk。 (记得,我们假设测量值被均方根为 0.1 的白噪声破坏) 。我们只有在同一准确测量情况下的一系列的 50 个仿真值能在滤波器循环内得到单独的测量值(例如,相同的测量噪声) 。于是在不同参数的模拟的比较是很有用的。 在第一次仿真时,我们确定了在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目居间协议居间协议合同8篇
- 2025家居电器分销合作合同协议书
- 2025新混凝土工程合同版
- 2025家具买卖合同样本
- 2025合同依据多样化分类标准展现出多样化类型
- 物质的量在化学实验中的应用教案(以核心素养为本的教学设计案例)
- 机械厂仓库规划布局规章
- 2025年商品房与经济适用房买卖合同差异解析
- 湖北事业单位笔试真题2025
- 考试我想和你握握手(说课稿)2025-2026学年初三下学期教育主题班会
- 氧化蜡行业深度研究分析报告(2024-2030版)
- 2025-2030年中国备件制造行业市场现状供需分析及投资评估规划分析研究报告
- 数字化运营与管理 课件 第1章 数字化运营基础
- 产品尾数管理制度
- 2025至2030中国智能功率模块(IPM)行业项目调研及市场前景预测评估报告
- 安全编码规范
- 中医养生保健操课件
- 平台运营中心管理制度
- 彩钢板房安装合同范本
- 竞选卫生委员演讲稿
- 2025-2030年中国课外辅导行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论