![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】六自由度三足并联机器人基于 Grassmann-Cayley代数的奇异性条件-中文翻译_第1页](http://file.renrendoc.com/FileRoot1/2017-12/1/621316f5-e8b9-4075-8c34-d4dbff3e79ac/621316f5-e8b9-4075-8c34-d4dbff3e79ac1.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】六自由度三足并联机器人基于 Grassmann-Cayley代数的奇异性条件-中文翻译_第2页](http://file.renrendoc.com/FileRoot1/2017-12/1/621316f5-e8b9-4075-8c34-d4dbff3e79ac/621316f5-e8b9-4075-8c34-d4dbff3e79ac2.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】六自由度三足并联机器人基于 Grassmann-Cayley代数的奇异性条件-中文翻译_第3页](http://file.renrendoc.com/FileRoot1/2017-12/1/621316f5-e8b9-4075-8c34-d4dbff3e79ac/621316f5-e8b9-4075-8c34-d4dbff3e79ac3.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】六自由度三足并联机器人基于 Grassmann-Cayley代数的奇异性条件-中文翻译_第4页](http://file.renrendoc.com/FileRoot1/2017-12/1/621316f5-e8b9-4075-8c34-d4dbff3e79ac/621316f5-e8b9-4075-8c34-d4dbff3e79ac4.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】六自由度三足并联机器人基于 Grassmann-Cayley代数的奇异性条件-中文翻译_第5页](http://file.renrendoc.com/FileRoot1/2017-12/1/621316f5-e8b9-4075-8c34-d4dbff3e79ac/621316f5-e8b9-4075-8c34-d4dbff3e79ac5.gif)
免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
六自由度三足并联机器人基于 Grassmann-Cayley 代数的奇异性条件 摘要 本文研究了奇异性条件大多数的六自由度并联机器人在每一条腿上都有一个球形接头。首先 ,确定致动器螺丝在腿链中心。然后用凯莱代数和相关的分解方法用于确定哪些条件的导数 (或刚度矩阵 )这些螺丝是按顺序的。这些工具是有利的 ,因为他们方便操纵坐标 -简单的表达式表示的几何实体 ,从而使几何解释的奇异性条件是更容易获得。使用这些工具 ,奇异性条件 (至少 )144 种这类的组合被划定在四个平面所相交的一个点上。这四个平面定义为这个零距螺丝球形关节的位置和方向。指数 Terms-Grassmann-Cayley 代数,奇点,三条腿的机器。 介绍 在过去的二十年里 ,许多研究人员广泛研究并联机器人的奇异性。不像串联机器人 ,失去在奇异配置中的自由度 ,尽管并联机器人的执行器都是锁着但是他们的的自由度还是可以获得的。因此 ,这些不稳定姿势的全面知识为提高机器人的设计和确定机器人的路径规划是至关重要的。 主要的方法之一 ,用于寻找奇异性并行机器人是基于计算雅可比行列式进行的。 Gosselin 和安杰利斯 1分类奇异性的闭环机制通过考虑两个雅克比定义输入速度和输出速度之间的关系。当圣鲁克和 Gosselin2减少了算术操作要求定义的雅可比行列式高夫斯图尔特平台 (GSP),从而使数值计算得到多项式。 另一个重要的工具 ,为分析螺旋理论中的奇异性 ,首先阐述了 1900 的论文 6和开发机器人应用程序。几项研究已经应用这个理论找到并联机器人的奇异性 ,例如 ,11-14。特别注意到情况 ,执行机构是线性和代表螺丝是零投的。在这些情况下 ,奇异的配置是解决通过使用几何 ,寻找可能的致动器线依赖 15-17。其他分类方法闭环机制可以被发现在 18-22。 在本文中 ,我们分析了奇异点的一大类三条腿的机器人 ,在每个腿链有一个球形接头上的任何点。我们只关注了正运动学奇异性。首先 ,我们发现螺丝相关执行机构的每个链。因为每一个链包含一个球形接头 ,自致动器螺丝是相互联合的 ,他们是通过球形关节的零螺距螺杆螺丝。然后我们使用 Grassmann-Cayley 代数和相关的发展获得一个代数方程 ,它源于管理行机器人包含的刚度矩阵。直接和高效检索的几何意义的奇异配置是最主要的一个优点 ,在这里将介绍其方法。 虽然之前的研究 53分析 7 架构普惠制 ,各有至少三条并发关节 ,本文扩展了奇点分析程度更广泛的一类机器人有三条腿和一个球形关节。使用降低行列式和Grassmann-Cayley 运营商我们获得一个通用的条件 ,这些机器人的奇异性提供在一个简单的几何意义方式计算中。 本文的结构如下。第二节详细描述了运动学结构的并联机器人。第三节包含一个简短的在螺丝和大纲性质的背景下驱动器螺丝 ,零距螺丝作用于中心的球形关节。第四部分包含一个介绍 Grassmann-Cayley 代数的基本工具用于寻找奇异性条件。这部分还包括刚度矩阵 (或导数 )分解成坐标自由表达。第五节中一个常见的例子给出了这种方法。最后 ,第六章比较了使用本方法结果与结果的其他技术。 运动构架 本文阐述了 6 自由度并联机器人有六间连通性基础和移动平台。肖海姆和罗斯 54提供了调查可能的结构 ,产生基于流动公式 6 自由度的 Grubler 和Kutzbach。他们寻找了所有的可能性 ,满足这个公式对关节的数目和任何链接。GSP 和三条腿的机器人结构的一个子集所列出的 6 自由度 Shoham 和罗斯。一个类似的例子也证实了了 Podhorodeski 和 Pittens55,他发现了一个类的三条腿的对称并联机器人 ,球形关节、转动关节的平台在每条腿比其他结构潜在有利。正如上面所讨论的 ,大多数的报告文献限制他们的分析结构和球形关节位于移动平台和棱柱关节作为驱动的关节。在这个分类 ,我们包括五种类型的关节和更多的可选职位的球形关节。 我们处理机器人有三个链连接到移动平台 ,每个驱动有两个 1 自由度关节或一个二自由度关节。这些链不一定是平等的 ,但都有移动和连接六个基地和之间的平台。除了球形接头 (S),关节考虑是棱镜 (P),转动 (R)、螺旋 (H)、圆柱 (C)和通用 (U),前三个是 1 自由度关节和最后两个二自由度的关节。所有的可能性都显示在表 I 和 II。该列表只包含机器人 ,有平等的连锁 ,总计 144 种不同的结构 ,但是机器人与任何可能的组合链也可以被认为是 membersof 这类方法。组合的总数大于 500 000,计算方式如下 : 管理方法 本节涉及螺丝和平台运动的确定。因为考虑机器人有三个串行链 ,每个驱动器螺丝的方向可以由其互惠到其他关节螺钉固定在链条。被动球形接头在每个链部队驱动器螺丝为零距 (行 )并且通过它的中心。因此,三个平面是创建中心位于自己的球形关节。 以下简要介绍了螺旋理论,广泛的解决 7, 73, 75;我们解决在第二节中列出相互的所有关节螺钉系统。 上述类的机器人的几何结果奇点现在相比其他方法获得的结果要准确。首先,我们比较奇异条件在上述 3 GSP 平台与结果报告线几何方法。 根据相对几何条件的他行方法区分不同的几种类型沿着棱镜致动器 81的奇异性。我们表明,所有这些奇异点是特定情况下的条件通过 (17 c)提供,这是有效的三条腿以及 6:3 GSP 平台的机器人的考虑。这种结构的奇异的配置根据线几何分析包括五种类型 :3 c、 4 b、 4 d,5 a 和 5 b17, 36。 奇异性分析 本节确定奇异性条件定义在第二节的机器人。第一部分包括寻找方向的执行机构的行动路线 ,基于解释第三节中介绍。他行通过球形接头中心 ,而他们的方向取决于关节的分布和位置。第二部分包括应用程序的方法使用了 Grassmann-Cayley 代数在第四节定义奇点。因为每对线满足在一个点 (球形接头 ),所有例子的解决方案是象征性地平等 ,无论点位置的腿或腿的对称性。我们从文献中举例说明使用三个机器人的解决方案。 1.方向的致动器螺丝 第一个例子是 3-PRPS 机器人提出 Behi61见图 3(a)。对于每个腿驱动螺丝躺在这家由球形接头中心和转动关节轴。特别是,致动器螺杆是垂直于轴的,和致动器螺杆是垂直于轴的 ,这些方向被描绘在图 3(b)。 第二个例子是 the3-USR 机器人提出 Simaan et al。 66见图 4(a)。每条腿有驱动器螺丝躺在通过球形接头中心和包含转动关节轴中。驱动器螺丝穿过球形接头中心并与转动关节轴相连。这些方向被描绘在图 4(b)。 第三个例子是 3-PPSP Byun 建造的机器人和 65见图 5(一个 )。每条腿 ,驱动螺丝躺在飞机通过球形接头中心和正常的棱镜接头轴。驱动器螺丝垂直于轴的 ,和致动器螺杆是垂直于轴的 ,这些方向被描绘在图 5(b)。 图 3 (a)3-PRPS 机器人提出 Behi61 (b)飞机和致动器螺丝 图 4 (a)3自由度机器人提出 Simaan 和 Shoham66 (b)飞机和致动器螺丝的 3自由度机器人 图 5 (a)3-PPSP 机器人提出 Byun65 (b)飞机和致动器螺丝 奇异性条件 雅克 (或 superbracket)的机器人是分解成普通支架 monomials 使用麦克米兰的分解 ,即 (16)。解释部分 3b 机器人,本文认为每个链有两个零距驱动器螺丝通过球形接头。拓扑,这个描述等于行 6:3 GSP(或在 53),这三条线,每经过一个双球面上的接头平台 (见图 6)。这意味着每对线共享一个公共点 (这些点在图 6 中 )。因此类的机器人被认为是在本文中,我们可以使用相同的标记点的至于 6:3 GSP。六线与相关各机器人通过双点,并且,用同样的方式在图 6。 图 6 6 - 3 GSP 结果 本文提出一个广义奇异性分析并联机器人组成元素。这些是有一个球形接头在每个腿链的三条腿的 6 自由度机器人。因为球形关节需要驱动器,螺丝是纯粹的力量作用于他们的中心 ,他们的位置沿链是不重要的。组成元素包括 144机制不同类型的关节,每个都有不同的联合装置沿链。提出并建立描述几个机器人出现在列表中。大量的机器人相关的分析组合不同被认为是。奇点的分析是由第一个找到的执行机构使用互惠的螺丝。然后,借助组合方法和Grassmann-Cayley 方法 ,得到刚度矩阵行列式在一个可以操作的协调自由形式,可以翻译成一个简单的几何条件之后。其定义是几何条件由执行机构位置的线条和球形接头,至少
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专有许可合同2篇
- 城市民屋购房合同4篇
- 理论业务知识培训课件
- 法兰阀门保温工程方案(3篇)
- 球鞋修复培训课件
- 清华苑建设项目环境影响报告表
- 房建工程坡道方案(3篇)
- 低压配线工程方案(3篇)
- 方案落地打造优.质工程(3篇)
- 工程博士发展方案范文(3篇)
- 西藏文化考试题目及答案
- 入党培训考试试题2025及答案
- 公章免责协议合同书模板
- 2025广东海珠区应急管理局招聘安全生产监督检查员18人笔试备考试题及答案解析
- 计算机维护合同补充协议
- 出口食品销售合同范本
- 加盟退款解除合同协议书
- 2025河北雄安新区招聘应急管理综合行政执法技术检查员10人考试备考题库及答案解析
- 支气管哮喘急性发作课件
- 小学数学新课标量感解读
- 餐饮服务食品安全管理体系
评论
0/150
提交评论