立体几何知识点总结定理.doc_第1页
立体几何知识点总结定理.doc_第2页
立体几何知识点总结定理.doc_第3页
立体几何知识点总结定理.doc_第4页
立体几何知识点总结定理.doc_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何知识点总结定理第一篇:高考立体几何知识点总结(详细) 高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 图1-1 棱柱 底面是四边形 底面是平行四边形 侧棱垂直于底面 棱柱 底面是矩形 四棱柱 底面是正方形 平行六面体 棱长都相等 直平行 六面体长方体正四棱柱正方体 性质: 、侧面都是平行四边形,且各侧棱互相平行且相等; 、两底面是全等多边形且互相平行; 、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 S直棱柱侧?ch(c是底周长,h是高) S直棱柱表面 = ch+ 2S底 V棱柱 = S底 h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底 面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; 、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:S正棱椎? 1 ch(c为底周长,h为斜高) 2 O P 体积:V棱椎? 1 Sh(S为底面积,h为高) 3 C 正四面体: 对于棱长为 a正四面体的问题可将它补成一个边长为 2 a(正方体的边长) 2 2 a的正方体问题。 2 对棱间的距离为 正四面体的高 62 a(?l正方体体对角线) 3 231 a(V正方体?4V小三棱锥?V正方体) 3 正四面体的体积为 正四面体的中心到底面与顶点的距离之比为1:3(? 11 l正方体体对角线l正方体体对角线) 62 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 4.2 圆柱的性质 (1)上、下底及平行于底面的截面都是等圆; (2)过轴的截面(轴截面)是全等的矩形。 4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 4.4 圆柱的面积和体积公式 S圆柱侧面 = 2rh (r为底面半径,h为圆柱的高) S圆柱全 = 2 r h + 2 r2 V圆柱 = S底h = r2h 5、圆锥的结构特征 5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。 5.2 圆锥的结构特征 (1) 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; (2)轴截面是等腰三角形; (3)母线的平方等于底面半径与高的平方和: l2 = r2 + h2 5.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。 6、圆台的结构特征 6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间 图1-5 圆锥 的部分称为圆台。 6.2 圆台的结构特征 圆台的上下底面和平行于底面的截面都是圆; 圆台的截面是等腰梯形; 圆台经常补成圆锥,然后利用相似三角形进行研究。 6.3 圆台的面积和体积公式 S圆台侧 = (R + r)l (r、R为上下底面半径) S圆台全 = r2 + R2 + (R + r)l V圆台 = 1/3 ( r2 + R2 + r R) h (h为圆台的高) 7 球的结构特征立体几何知识点总结定理 7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。空 间中,与定点距离等于定长的点的集合叫做球 面,球面所围成的几何体称为球体。 7-2 球的结构特征 球心与截面圆心的连线垂直于截面; 截面半径等于球半径与截面和球心的距离的平方差:r2 = R2 d2 7-3 球与其他多面体的组合体的问题 球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是: 根据题意,确定是内接还是外切,画出立体图形; 找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图; 将立体问题转化为平面几何中圆与多边形的问题; 注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长。 7-4 球的面积和体积公式 S球面 = 4 R2 (R为球半径) V球 = 4/3 R3 (三)空间几何体的表面积与体积 空间几何体的表面积 棱柱、棱锥的表面积:各个面面积之和 圆柱的表面积 :S?2?rl?2?r2 圆锥的表面积:S ?rl?r2 22 S?rl?r?Rl?R圆台的表面积: 球的表面积:S?4?R 扇形的面积公式S扇形 2 n?R211?lr=?r2(其中l表示弧长,r表示半径,?表示弧度) 36022 空间几何体的体积 柱体的体积 :V?S底?h 1 锥体的体积 :V?S底?h 3 1 台体的体积 : V?S上3球体的体积:V? ?下S)? h 43 ?R 3 (四)空间几何体的三视图和直观图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 正俯长相等、正侧高相同、俯侧宽一样 注:球的三视图都是圆;长方体的三视图都是矩形 直观图:斜二测画法 斜二测画法的步骤: (1)平行于坐标轴的线依然平行于坐标轴; (2)平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3)画法要写好 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 二 、点、直线、平面之间的关系 (一)、立体几何网络图: 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 (6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (12)、垂直于同一平面的两直线平行。 2、线线垂直的判断: (7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也 和这条斜线垂直。 (8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜 线的射影垂直。 第二篇:立体几何知识点总结完整版 立体几何知识点总结完整版 【2013考纲解读】 1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。 2、空间两条直线的三种位置关系,并会判定。 3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。 4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。 5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. 6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. 7.空间平行与垂直关系的论证. 8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题. 9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。 【知识络构建】 【重点知识整合】 1空间几何体的三视图 (1)正视图:光线从几何体的前面向后面正投影得到的投影图; (2)侧视图:光线从几何体的左面向右面正投影得到的投影图; (3)俯视图:光线从几何体的上面向下面正投影得到的投影图 几何体的正视图、侧视图和俯视图统称为几何体的三视图 2斜二测画水平放置的平面图形的基本步骤 (1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox,Oy,建立直角坐标系; (2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox,Oy,使xOy45(或135),它们确定的平面表示水平平面; (3)画对应图形,在已知图形中平行于x轴的线段,在直观图中画成平行于x轴,且长度保持不变;在已知图形中平行于y轴的线段,在直观图中画成平行于y轴,且长度变为原来的一半; (4)擦去辅助线,图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线) 3.体积与表面积公式: (1)柱体的体积公式:V柱?Sh;锥体的体积公式: V锥?台体的体积公式: V棱台? 1Sh; 314h(S?S?);球的体积公式: V球?r3. 33 2 (2)球的表面积公式: S球?4?R. 【高频考点突破】 考点一 空间几何体与三视图 1一个物体的三视图的排列规则是:俯视图放在正视图的 下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样即“长对正、高平齐、宽相等” 2画直观图时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论