必修1-第一章-集合1.doc_第1页
必修1-第一章-集合1.doc_第2页
必修1-第一章-集合1.doc_第3页
必修1-第一章-集合1.doc_第4页
必修1-第一章-集合1.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、集合有关概念1集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。集合常用大写的拉丁字母来表示,如集合A、集合B集合中的每一个对象称为该集合的元素(element),简称元。集合的元素常用小写的拉丁字母来表示。如a、b、c、p、q指出下列对象是否构成集合,如果是,指出该集合的元素。(1)我国的直辖市; (2)省溧中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于的数; (6)小于的正数。2关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。3集合元素与集合的关系用“属于”和“不属于”表示;(1)如果是集合的元素,就说属于,记作(2)如果不是集合的元素,就说不属于,记作 (“”的开口方向,不能把aA颠倒过来写)4有限集、无限集和空集的概念: 有限集:元素个数有限个 无限集:元素个数无穷个 空集:一个元素都没有的集合 例:x|x2=55常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+ (3)整数集:全体整数的集合记作Z , (4)有理数集:全体有理数的集合记作Q , (5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*6集合的表示方法:集合的表示方法,常用的有列举法和描述法(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;各元素之间用逗号分开。 (2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成的形式。 如: x| x3 ,所有的正整数 (3)韦恩(Venn)图7两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。重点:集合的含义与表示方法. 难点:表示法的恰当选择. 1集合的9个实例: (1)120以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形; (5)广东省在2011年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点; (7)方程的所有实数根; (8)不等式的所有解; (9)广州市2004年9月入学的高一学生的全体. 一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素. 集合常用大写字母A,B,C,D,表示,元素常用小写字母表示. 集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等. 2判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流. 3. 举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由. 4.下列各项中,不可以组成集合的是( )A所有的正数 B等于的数 C接近于的数 D不等于的偶数 元素与集合的关系有两种:属于和不属于. 如果是集合A的元素,就说属于集合A,记作. 如果不是集合A的元素,就说不属于集合A,记作. 5.常用数集的记号.N:( ) Z:( ) Q:( ) R:( )右上角加上个“+”号或“*”号表示取正的,加上“-”表示取负的(1)_, _, _(2)(3)_6.集合表示的三种方法:自然语言.列举法和描述法 集合按元素个数可以分为有限集、无限集1、列出集合的表示方法:自然语言、列举法和描述法表示集合。我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。2、列举法列举法:把集合中的元素一一列举出来,写在大括号内。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;用列举法必须注意的事项:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:1,2,3,100自然数集N:1,2,3,4,,n,(3)区分a与a:a表示一个集合,该集合只有一个元素. a表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.有些集合的元素是列举不完的,此时就要用下面的方法来表示。3、描述法描述法:把集合中的元素的公共属性描述出来,写在大括号内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。如:x|x-32,(x,y)|y=x2+1,直角三角形,;例:用描述法表示集合2,4,6,8,10解:x|x=2n,0n6且xN或xN|x=2n,0n6习惯上我们用第一种方法,不把xN写在竖线左边。强调:描述法表示集合应注意集合的代表元素(x,y)|y= x2+3x+2与 y|y= x2+3x+2不同,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集Z。例 集合与集合是同一个集合吗?答:不是因为集合是抛物线上所有的点构成的集合,集合= 是函数的所有函数值构成的数集辨析:这里的 已包含“所有”的意思,所以不必写全体整数。下列写法实数集,R也是错误的。说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。4、何时用列举法?何时用描述法?有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合;集合1000以内的质数(1) 用描述法表示集合1,3,5,7,9; (2)用列举法表示集合(3)已知集合,试用列举法表示集合。(4)下列四个集合中,是空集的是( )A BC D(5)下列命题正确的有( )很小的实数可以构成集合;集合与集合是同一个集合;这些数组成的集合有个元素;集合是指第二和第四象限内的点集。A个 B个 C个 D个(6)方程组的解集是( )(7)用适当的符号填空(1)(2),(8)若集合中的元素是的三边长,则一定不是( )A锐角三角形 B直角三角形 C钝角三角形 D等腰三角形集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。读作A包含于B反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB, BC ,那么 AC 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n1 个真子集(除它本身)1,2,3有3个元素,8个子集,7个真子集例:A1,2A的子集为,1,2,1,2A的真子集为,1,21.2集合间的基本关系教学重点.难点:重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集. 记作: 读作:A包含于B(或B包含A). 如果两个集合所含的元素完全相同,那么我们称这两个集合相等. 为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。AB 图1 图2 1.“若”相类比,在集合中,你能得出什么结论? 2.举出几个具有包含关系.相等关系的集合实例,并用Venn图表示. 3. 0,0与三者之间有什么关系?4. 包含关系与属于关系有什么区别?5.空集是任何集合的子集吗?空集是任何集合的真子集吗?6.能否说任何一个集合是它本身的子集,即?7.对于集合A,B,C,D,如果AB,BC,那么集合A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论