免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年高考理科数学一轮复习题型归纳与变式演练基本不等式及应用【题型一】:基本不等式的理解【题型二】:利用基本不等式求最值【题型三】:基本不等式应用【题型四】:基本不等式在实际问题中的应用【题型一】:基本不等式的理解【例1】. ,给出下列推导,其中正确的有 (填序号). (1)的最小值为;(2)的最小值为;(3)的最小值为.【解析】(1);(2)(1),(当且仅当时取等号).(2),(当且仅当时取等号).(3),(当且仅当即时取等号),与矛盾,上式不能取等号,即【总结升华】在用基本不等式求函数的最值时,必须同时具备三个条件:一正二定三取等,缺一不可.【变式训练】:【变式1】给出下面四个推导过程: ,; ,; , ; ,.其中正确的推导为( )A. B. C. D.【解析】,符合基本不等式的条件,故推导正确.虽然,但当或时,是负数,的推导是错误的.由不符合基本不等式的条件,是错误的.由得均为负数,但在推导过程中,将整体提出负号后,均变为正数,符合基本不等式的条件,故正确.选D.【变式2】下列命题正确的是( )A.函数的最小值为2. B.函数的最小值为2C.函数最大值为 D.函数 的最小值为2【答案】C【解析】A选项中,当时由基本不等式;当时.选项A错误.B选项中,的最小值为2(当且仅当时,成立)但是,这是不可能的. 选项B错误.C选项中,故选项C正确。【题型二】:利用基本不等式求最值【例2】设,则的最小值是A1B2C3D4【解析】当且仅当即时取等号.【答案】D【变式训练】:【变式1】若,求的最大值.【解析】因为,所以, 由基本不等式得:,(当且仅当即时, 取等号)故当时,取得最大值.【变式2】已知,求的最大值.【解析】, (当且仅当,即时,等号成立)(当且仅当,即时,等号成立)故当时,的最大值为4.【例3】.已知a0,b0,ab2,则y的最小值是AB4CD5【解析】,,【答案】选C【变式训练】:【变式1】若,且,求的最小值 .【解析】,,(当且仅当即,时,等号成立)(当且仅当,时,等号成立)故当,时,的最小值为64.【变式2】已知x0,y0,且,求x+y的最小值。【解析】,x0,y0,(当且仅当,即y=3x时,取等号)又,x=4,y=12当x=4,y=12时,x+y取最小值16。【题型三】:基本不等式应用【例4】. 设,求证:【证明】 成立【变式训练】:【变式1】已知,求证:【解析】(当且仅当即,等号成立).【例5】已知,且.(1)若则的值为 .(2)求证:【解析】(1)由题意可得带入计算可得(2)由题意和基本不等式可得,【变式训练】:【变式】已知函数的定义域为R.(1)求实数m的取值范围.(2)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【解析】(1)因为函数的定义域为R,恒成立设函数则m不大于的最小值即的最小值为4,(2)由(1)知n=4当且仅当时,即时取等号.的最小值为【题型四】:基本不等式在实际问题中的应用【例6】. 某农场有废弃的猪圈,留有一面旧墙长12m,现准备在该地区重新建立一座猪圈,平面图为矩形,面积为,预计(1)修复旧墙的费用是建造新墙费用的 ,(2)拆去旧墙用以改造建成新墙的费用是建新墙的,(3)为安装圈门,要在围墙的适当处留出的空缺。试问:这里建造猪圈的围墙应怎样利用旧墙,才能使所需的总费用最小? 【解析】显然,使旧墙全部得到利用,并把圈门留在新墙处为好。设修复成新墙的旧墙为 ,则拆改成新墙的旧墙为,于是还需要建造新墙的长为设建造新墙需用元,建造围墙的总造价为元,则(当且仅当即时,等号成立)故拆除改造旧墙约为米时,总造价最小.【变式训练】:【变式1】某游泳馆出售冬季学生游泳卡,每张卡240元.并规定不记名,每卡每次只限1人,每天只限1次.某班有48名学生,教师准备组织学生集体冬泳,除需要购买若干张游泳卡外,每次去游泳还要包一辆汽车,无论乘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年织金县城供水设施改造工程融资投资立项项目可行性研究报告非常
- 赤峰市人民医院消化内科教学能力综合评价考核
- 运城市人民医院副主任护师年度绩效考核
- 上海市人民医院调Q激光操作技能分级考核
- 面粉订购合同5篇
- 春节礼盒促销方案
- 2025年无人钻探车市场调研报告
- 2025年可研报告定义标准及编制依据(精)
- 2025年中国叔碳酸项目投资计划书
- 中国脱砷催化剂项目经营分析报告
- 《接近开关原理与应用》课件
- 2025全日制劳动合同协议官方版范本
- 学生代表大会制度
- 电缆防火封堵施工方案
- 四年级道德与法治学习评估方案
- 中国常规肺功能检查基层指南(2024年)
- 聘用主播合同范本
- 钢结构工程高空防坠落方案
- 《已上市化学药品药学变更研究技术指导原则(试行)》
- 高大模板支撑安装旁站记录
- 传媒行业销售员聘用合同
评论
0/150
提交评论