




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十七章反比例函数 一 本章特点1 突出反比例函数与现实世界的联系 2 注重数学思想方法的渗透 二 本章要求1 知识结构框图 2 课程学习目标 理解反比例函数的概念 能根据实际问题中的条件确定反比例函数的解析式 k为常数 k 0 能判断一个给定函数是否为反比例函数 能描点画出反比例函数的图象 会用代定系数法求反比例函数的解析式 进一步理解函数的三种表示方法 即列表法 解析式法和图象法的各自特点 能根据图象数形结合地分析并掌握反比例函数 k为常数 k 0 的函数关系和性质 能利用这些函数性质分析和解决一些简单的实际问题 在学习一次函数的基础上 进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点 进一步认识数形结合的思想方法 再次经历 找出常量和变量 建立并表示函数模型 讨论函数模型 解决实际问题 的过程 进一步体会函数是刻画现实世界中变化规律的重要数学模型 3 2009年北京市数学中考说明中对本章知识的要求 4 教学重点与难点 教学重点 反比例函数的概念 图象和性质及反比例函数的应用 教学难点 对反比例函数及其图象性质的理解和掌握 以及反比例函数的应用 5 课时安排本章共安排了2小节以及2个选学内容 教学时间约需8课时 大体分配如下 仅供参考 17 1反比例函数3课时17 2实际问题与反比例函数4课时数学活动小结1课时 三 对教学的几点建议1 注意做好与已学内容的衔接 2 加强反比例函数与正比例函数的对比 3 把突出函数中蕴涵的重要数学思想作为本章的主要线索 4 密切反比例函数与现实世界的联系 5 注意突破知识的难点和重点 四 具体知识 一 反比例函数的概念 2 k 0 也可以写成xy k的形式 3 反比例函数的自变量x 0 故函数图象与x轴 y轴无交点 k 0 可以写成 k 0 的形式 1 4 在解决有关自变量系数问题时应特别注意系数k 0这一限制条件 例1 1 下列函数中 y是x的反比例函数的是 A y 3xB C 3xy 1D 2 若 则y是z的 A 正比例函数B 反比例函数C 一次函数D 不能确定 3 平面直角坐标系中有六个点A 1 5 B 3 C 5 1 D 2 E 3 F 2 其中有五个点在同一反比例函数图象上 不在这个反比例函数图象上的点是 A 点CB 点DC 点ED 点F 例2 1 k 时 函数是反比例函数 2 如果函数的图象是双曲线 那么k 注 此类问题要同时考虑两个条件 比例系数 自变量的指数 1 注意与正比例函数的性质进行对比 注 双曲线的两个分支是断开的 研究反比例函数的增减性时 要将两个分支分别讨论 不能一概而论 课件 二 反比例函数的图象和性质 2 反比例函数的其它性质 1 反比例函数的图象既是轴对称图形又是中心对称图形 注 正比例函数与反比例函数 当时 两图象没有交点 当时 两图象必有两个交点 且这两个交点关于原点对称 2 反比例函数中比例系数k的几何意义 过双曲线 k 0 上任意一点作一坐标轴的垂线 连接该点和原点 所得三角形的面积为 过双曲线 k 0 上任意一点作x轴 y轴的垂线 所得矩形的面积为 课件 S ABC 2 S ABC S矩形ABC S AOB 例3 如果函数是反比例函数 且它的图象在第二 四象限内 那么k 2 如果函数是反比例函数 且y随x的增大而减小 那么k 注 此类问题要同时考虑两个条件 比例系数 自变量的指数 例4 1 已知一次函数y ax b的图象经过第一 二 四象限 则函数的图象位于第象限 2 已知反比例函数 当x 0时 y随x的增大而增大 那么一次函数y kx k的图象经过象限 3 已知a b 0 点P a b 在反比例函数的图象上 则直线y ax b不经过的象限是 A 第一象限B 第二象限C 第三象限D 第四象限 4 已知函数y k x 1 和 k 0 它们在同一坐标系内的图象大致是 小结 同一道题中的相同字母代表同一个值 根据其中一个函数的特点 确定待定系数的符号 再根据待定系数的符号确定另一个函数图象的位置 是解此类问题的重要方法 例5 1 在反比例函数的图象上有两点 且 则的值为 A 正数B 负数C 非正数D 非负数2 在函数 a为常数 的图象上有三个点 则函数值y1 y2 y3的大小关系是 A y2 y3 y1B y3 y2 y1C y1 y2 y3D y3 y1 y2 3 在函数 k 0 的图象上有三点A1 x1 y1 A2 x2 y2 A3 x3 y3 已知x1 x2 0 x3 则下列各式中正确的是 A y1 y2 y3B y3 y2 y1C y2 y1 y3D y3 y1 y2 4 下列四个函数中 y 5x y 5x y随x的增大而减小的函数有 A 0个B 1个C 2个D 3个 注 函数增减性问题可利用图象解决 直观明了 反比例函数的增减性注意是每一支双曲线上的增减性 例6 1 2 3 小结 在研究反比例函数中有关面积问题 注意考虑利用k的几何意义加以解决 3 如图 直线y kx k 0 与双曲线交于A B两点 若A B两点的坐标分别为A x1 y1 B x2 y2 则x1y2 x2y1的值为 A 8B 4C 4D 0 注 比例系数k的值等于反比例函数图象上任意一点的横 纵坐标之积 三 实际问题与反比例函数 1 求函数解析式的方法 待定系数法 根据实际意义列函数解析式 2 注意学科间综合 但重点放在对数学知识的研究上 对跨学科问题不宜过难 3 一张正方形的纸片 剪去两个一样的小矩形得到一个 E 图案 如图所示 设小矩形的长 宽分别为x y 剪去部分的面积为20 若2 x 10 则y与x的函数图象是 注 在实际问题中应注意自变量的取值范围 例8 1 某气球内充满了一定质量的气体 当温度不变时 气球内的气压P 千帕 是气球的体积V 米3 的反比例函数 其图象如图所示 千帕是一种压强单位 求出这个函数的解析式 当气球的体积为0 8立方米时 气球内的气压是多少千帕 当气球内的气压大于144千帕时 气球将爆炸 为了安全起见 气球的体积应不小于多少立方米 例9 2 为了预防 非典 某学校对教室采用药薰消毒法进行消毒 已知药物燃烧时 室内每立方米空气中的含药量y 毫克 与时间x 分钟 成正比例 药物燃烧完后 y与x成反比例 如图所示 现测得药物8分钟燃毕 此时室内空气中每立方米的含药量为6毫克 请根据题中所提供的信息解答下列问题 药物燃烧时y关于x的函数关系式为 自变量x的取值范围是 药物燃烧后y关于x的函数关系式为 研究表明 当空气中每立方米的含药量低于1 6毫克时学生方可进教室 那么从消毒开始 至少需要经过 分钟后 学生才能回到教室 研究表明 当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时 才能有效杀灭空气中的病菌 那么此次消毒是否有效 为什么 课件 注 当两个变量的乘积是定值时 是反比例函数 当两个变量的比值是定值时 是正比例函数 在求函数最值问题时 可以将解析式进行变形 以便作出判断 3 四 反比例函数与其它知识的综合应用 例10 找规律 2 3 不解方程 判断下列方程解的个数 例11 用函数的方法解决方程 不等式的有关问题 课件 注 函数与方程 不等式有着密切的联系 用函数图象解决方程 不等式的有关问题 直观简捷 课件 例12 函数与几何图形综合 3 课件 5 如图 一次函数y ax b的图象与反比例函数的图象交于第一象限C D两点 坐标轴交于A B两点 连结OC OD O是坐标原点 利用图中条件 求反比例函数的解析式和m的值 双曲线上是否存在一点P 使得 POC和 POD的面积相等 若存在 给出证明并求出点P的坐标 若不存在 说明理由 课件 注 当函数与几何图形综合应用时 要紧紧抓住几何图形的特征 同时利用函数的性质解决问题 例13 运动变化1 如图 已知正方形OABC的面积为9 点O为坐标原点 点A C分别在x轴 y轴上 点B在函数 k 0 x 0 的图象上 点P m n 是函数 k 0 x 0 的图象上任意一点 过P分别作x轴 y轴的垂线 垂足为E F 设矩形OEPF在正方形OABC以外的部分的面积为S 求B点坐标和k的值 当时 求点P的坐标 写出S关于m的函数关系式 课件 注 在研究动态几何问题时 应注意观察在图形的运动过程中可能出现的所有情况 然后将每种情况分别在相对 静止 的状态下进行分析 运用数形结合 分类讨论思想解决问题 反比例函数与动态几何问题综合时 要充分应用反比例函数的图象和性质 以及几何图形特点 把问题的数量关系转化为图形的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省秦皇岛市实验中学2025-2026学年高二上学期开学考试数学试卷
- MR成像新算法-洞察及研究
- 智能决策+动态优化与5G应用-洞察及研究
- 部队医院为兵服务课件
- 四川省泸州市合江县第五片区2024-2025学年八年级下学期第一次联考生物试题(含答案)
- 内蒙古赤峰市敖汉旗2024-2025学年八年级下学期中小学教学质量统一检测期末英语试卷(无答案听力音频及原文)
- 河北省邢台市南宫市2024-2025学年八年级下学期期末物理试题(含答案)
- 2025-2026学年语文三年级上册统编版 第三、四单元:基础知识归类复习卷 有答案
- 部门用车安全培训内容课件
- 广东省清远市清新区第四中学教育集团六校联考2024-2025学年八年级上学期11月期中数学试题(学生版)
- 交通安全防御性驾驶
- 16949标准培训课件
- 奶茶行业深度分析报告
- T-CMES 04001-2020 机床装备制造成熟度评价规范
- 采购报告范文
- 某县某年度高标准基本农田建设项目复核报告
- 现代辅助生殖技术护理伦理
- 体育设施建设造价评估方案
- 施工现场安排及人材机计划
- 教师督导问责办法培训
- 户外演出舞台方案
评论
0/150
提交评论