




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识回顾 等比数列的前n项和 一 主讲丁秋萍 国王赏麦的故事 传说在古印度 有位名叫西萨的人 发明了国际象棋 当时的印度国王大为赞赏 对他说 我可以满足你的任何要求 西萨说 请在我棋盘的64个方格上 第一格放1粒小麦 第二格放2粒 第三格放4粒 往后每一格都是前一格的两倍 直至64格 请问 要满足西萨的要求 需要多少粒小麦 国王能满足他吗 若 式两边乘以2得 探究一 如何求麦粒总数 两式相减得 2 错位相减法 比较 两式 有什么关系 反思 纵观全过程 式两边为什么要乘以2 探究二 如何求一般等比数列的前n项和 两边同时乘以为 设为等比数列 为首项 为公比 则它的前n项和 错位相减法 由 得 即 分类讨论 当时 当时 即是一个非零常数列 根据求和公式 运用方程思想 五个基本量中 知三求二 所以当人们把一袋一袋的麦子搬来开始计数时 国王才发现 就是把全印度甚至全世界的麦粒全拿来 也满足不了他的要求 其实 人们估计 全世界一千年也难以生产这么多麦子 公式应用一 国王赏麦的故事 n 1 判断下列各题的对错 并说明理由 n 若且 则 c2 1 2 n 公式应用二 公式应用三 变式训练 公式应用三 分析 首先要考虑此和式为什么数列求和 a 0与a 0时各是什么形式的求和 q 1 q 1分类讨论 乘公比错位相减 转化思想 方程思想 数学源于生活 数学用于生活 或 知三求二 等比数列的前n项和公式 归纳小结巩固新知 布置作业提高升华 书面作业 必做题 课本P61A组 一尺之棰 日取其半 万世不竭 问截n次后 截去的总长是多少 选做题 课本P61A组 研究性作业 等比数列前n项和的其他推导办法 等比数列前n项和公式的推导欣赏 当q 1时Sn na1 一 用等比性质推导 二 借助和式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海上风能资源评估技术及深远海风电项目布局策略报告
- 2025年电商绿色物流与物流人才培养报告
- 解析卷-人教版(五四制)6年级数学下册期末试题附参考答案详解(精练)
- 2025至2030年中国办公系统自动化行业发展趋势预测及投资战略咨询报告
- 2025至2030年中国房地产厨卫行业运行态势及未来发展趋势预测报告
- 押题宝典高校教师资格证之《高等教育法规》考试题库带答案详解(a卷)
- 2025年度肉类产品线上线下销售渠道合作协议范本
- 2025版高效节能清包工施工合同文本
- 2025年度环保设备集中采购框架协议范本
- 2025年能源设备采购合同书范本
- 2025年医卫类病理学技术(中级)专业知识-专业实践能力参考题库含答案解析(5套试卷)
- 2025上海科技馆事业单位工作人员招聘10人笔试备考题库及答案解析
- 2025年财政管理知识竞赛题库及答案
- 满意度调查测评方案
- 区域产业协同发展面试题
- 【初二】【八年级】【道法】2025【秋】上学期开学第一课【统编版】(课件)
- 当归种植培训课件
- 军事类面试题目及答案
- 三年(2023-2025)中考语文真题分类汇编(全国)专题22 议论文阅读(解析版)
- 学习2025年初中初三开学第一课专题
- 2025年浙江省教师招聘考试(语文)历年参考题库含答案详解(5卷)
评论
0/150
提交评论