




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009年中考数学复习教材回归知识讲解+例题解析+强化训练反比例函数在中考中的常见题型知识讲解 1反比例函数的图像是双曲线,故也称双曲线y=(k0) 2反比例函数y=(k0)的性质 (1)当k0时函数图像的两个分支分别在第一,三象限内在每一象限内,y随x的增大而减小 (2)当k0 点A在反比例函数y=的图像上,得3a=,解得a1=2,a2=2,经检验a1=2,a2=2是原方程的根,但a2=2不符合题意,舍去 点A的坐标为(2,6) (2)由题意,设点B的坐标为(0,m) m0,m= 解得m=,经检验m=是原方程的根, 点B的坐标为(0,) 设一次函数的解析式为y=kx+ 由于这个一次函数图像过点A(2,6), 6=2k+,得k= 所求一次函数的解析式为y=x+ 例2 如图,已知RtABC的顶点A是一次函数y=x+m与反比例函数y=的图像在第一象限内的交点,且SAOB=3 (1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,请写出它们的解析式;如不能确定,请说明理由 (2)如果线段AC的延长线与反比例函数的图像的另一支交于D点,过D作DEx轴于E,那么ODE的面积与AOB的面积的大小关系能否确定?(3)请判断AOD为何特殊三角形,并证明你的结论 【分析】AOB是直角三角形,所以它的面积是两条直角边之积的,而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数由题意不难确定m,则所求一次函数,反比例函数的解析式就确定了 由反比例函数的定义可知,过反比例函数图像上任一点作x轴,y轴的垂线,该点与两垂足及原点构成的矩形的面积都是大小相等的 【解答】(1)设B(x,0),则A(x0,),其中00,m0 在RtABO中,AB=,OB=x0 则SABO =x0=3,即m=6 所以一次函数的解析式为y=x+6;反比例函数的解析式为y= (2)由得x2+6x6=0, 解得x1=3+,x2=3 A(3+,3+),D(3,3) 由反比例函数的定义可知,对反比例函数图像上任意一点P(x,y),有 y=即xy=6 SDEO =xDyD=3,即SDEO =SABO (3)由A(3+,3+)和D(3,3)可得AO=4,DO=4,即AO=DO 由图可知AOD90,AOD为钝角等腰三角形 【点评】特殊三角形主要指边的关系和角的关系通过对直观图形的观察,借助代数运算验证,便不难判断强化训练一、填空题1(2006,南通)如图1,直线y=kx(k0)与双曲线y=交于A(x1,y1),B(x2,y2)两点,则2x1y27x2y1的值等于_ 图1 图2 图32(2006,重庆)如图2,矩形AOCB的两边OC,OA分别位于x轴,y轴上,点B的坐标为B(,5),D是AB边上的一点,将ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是_3近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为_4若y=中,y与x为反比例函数,则a=_若图像经过第二象限内的某点,则a=_5反比例函数y=的图像上有一点P(a,b),且a,b是方程t24t2=0的两个根,则k=_;点P到原点的距离OP=_6已知双曲线xy=1与直线y=x+无交点,则b的取值范围是_7反比例函数y=的图像经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两个根,那么点P的坐标是_8(2008,咸宁)两个反比例函数y=和y=在第一象限内的图像如图3所示,点P在y=的图像上,PCx轴于点C,交y=的图像于点A,PDy轴于点D,交y=的图像于点B,当点P在y=的图像上运动时,以下结论: ODB与OCA的面积相等; 四边形PAOB的面积不会发生变化; PA与PB始终相等 当点A是PC的中点时,点B一定是PD的中点 其中一定正确的是_(把你认为正确结论的序号都填上,少填或错填不给分)二、选择题9(2008,济南)如图4所示,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB,AC分别平行于x轴,y轴,若双曲线y=(k0)与ABC有交点,则k的取值范围是( ) A1k2 B1k3 C1k4 D1k0)的第一象限内的图像如图5所示,P为该图像上任意一点,PQ垂直于x轴,垂足为Q,设POQ的面积为S,则S的值与k之间的关系是( ) AS= BS= CS=k DSk11如图6,已知点A是一次函数y=x的图像与反比例函数y=的图像在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么AOB的面积为( ) A2 B C D212函数y=与y=mxm(m0)在同一平面直角坐标系中的图像可能是( )13如果不等式mx+n4,点(1,n)在双曲线y=上,那么函数y=(n1)x+2m的图像不经过( ) A第一象限 B第二象限 C第三象限 D第四象限14(2006,攀枝花)正比例函数y=2kx与反比例函数y=在同一坐标系中的图像不可能是( )15已知P为函数y=的图像上一点,且P到原点的距离为,则符合条件的P点数为( ) A0个 B2个 C4个 D无数个16如图,A,B是函数y=的图像上关于原点O对称的任意两点,AC平行于y轴,交x轴于点C,BD平行于y轴,交x轴于点D,设四边形ADBC的面积为S,则( )AS=1 B1S2三、解答题17已知:如图,反比例函数y=与一次函数y=x+2的图像交于A,B两点,求:(1)A,B两点的坐标; (2)AOB的面积18(2006,广州白云区)如图,已知一次函数y=kx+b的图像与反比例函数y=的图像交于A,B两点,且点A的横坐标和点B的纵坐标都是2,求:(1)一次函数的解析式; (2)AOB的面积19已知函数y=的图像上有一点P(m,n),且m,n是关于x方程x24ax+4a26a8=0的两个实数根,其中a是使方程有实根的最小整数,求函数y=的解析式20(2006,北京市)在平面直角坐标系Oxy中,直线y=x绕点O顺时针旋转90得到直线L直线L与反比例函数y=的图像的一个交点为A(a,3),试确定反比例函数的解析式21(2008,南通)如图所示,已知双曲线y=与直线y=x相交于A,B两点第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点过点B作BDy轴交x轴于点D过N(0,n)作NCx轴交双曲线y=于点E,交BD于点C (1)若点D的坐标是(8,0),求A,B两点的坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM,BM分别与y轴相交于P,Q两点,且MA=pMP,MB=qMQ,求pq的值22如图,在等腰梯形ABCD中,CDAB,CD=6,AD=10,A=60,以CD为弦的弓形弧与AD相切于D,P是AB上的一个动点,可以与B重合但不与A重合,DP交弓形弧于Q (1)求证:CDQDPA; (2)设DP=x,CQ=y,试写出y关于x的函数关系式,并写出自变量x的取值范围; (3)当DP之长是方程x28x20=0的一根时,求四边形PBCQ的面积答案:120 2y= 3y= 42或1;1 52;2 60b4 7(2,2)8 9C 10B 11C 12C 13B 14D 15A 16C17(1)由,解得, A(2,4),B(4,2) (2)当y=0时,x=2,故y=x+2与x轴交于M(2,0),OM=2SAOB=SAOM +SBOM =OMyA+OMyB=24+22=4+2=618(1)y=x+2 (2)SAOB =619由=(4a)24(4a26a8)0得a, 又a是最小整数, a=1 二次方程即为x2+4x+2=0,又mn=2,而(m,n)在y=的图像上,n=,mn=k,k=2,y=20依题意得,直线L的解析式为y=x A(a,3)在直线y=x上, 则a=3即A(3,3) 又A(3,3)在y=的图像上, 可求得k=9 反比例函数的解析式为y=21(1)D(8,0),B点的横坐标为8,代入y=x中,得y=2 B点坐标为(8,2),而A,B两点关于原点对称,A(8,2) 从而k=82=16 (2)N(0,n),B是CD的中点,A,B,M,E四点均在双曲线上, mn=k,B(2m,),C(2m,n),E(m,n) S矩形DCNO=2mn=2k,SDBO=mn=k,SOEN =mn=k, S四边形OBCE=S矩形DCNOSDBO SOEN =k k=4 由直线y=x及双曲线y=,得A(4,1),B(4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学年南京市九年级语文上学期期中考试卷附答案解析
- 斜拉桥上部结构主梁施工方案
- 宪法九版习题及答案 第8章 人民法院与人民检察院在线练习
- 高一功的说课课件
- 砂石场砂石资源采购合同执行监督与考核
- 停薪留职期间员工培训及技能提升服务合同
- 乡村振兴私募股权投资基金委托管理协议
- 人力资源外包合同修订及绩效管理与激励协议
- 成人开放大学咨询服务合同
- 职业教育实训教学安全管理规定
- 园林绿化景观施工组织设计概述
- Britax宝得适百代适儿童汽车安全座椅推车婴童用品全线产品介绍
- 10kV高压开关柜验收规范标准详
- 英才学院《机械工程测试技术》课件07振动的测试
- 焊材入库、发放与回收记录模板
- 生药学-绪论-第一章
- 2019版外研社高中英语选择性必修二单词默写表
- 第一讲 ASPEN Plus使用入门课件
- 铁路客运英语中专学习教案
- 手术部位感染的预防与控制
- 高应变检测报告(共9页)
评论
0/150
提交评论