




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于 Matlab 激光谐振腔模式模拟 1 6 激光原理课程设计激光原理课程设计 基于基于 Matlab 激光谐振腔模式模拟激光谐振腔模式模拟 作者 光电 0905 唐世豪 一 原理分析一 原理分析 1 1 基本原理基本原理 在分析激光器工作原理的过程中 谐振腔中的模式分布占据着重要的意义 经典的研 究激光谐振腔内激光模式分布及传播规律的方法是 运用菲涅耳 基尔霍夫衍射积分公式 其关系式如式 1 1 4 1 cos 式中 为 x y 与 x y 连线的长度 为 S 面上点 x y 处的法线和上述连线之间的夹 角 ds 为 S 面上的面积元 k 为波矢的模 一般而言 腔长比镜面的线度大很多 近似取为 2 L 同时 假定腔面 1 的线度 a 远大于波长 被积函数中的不能简单的近似 我们只能根据不同几何形状的 腔型来进行合理近似 于是 将公式 1 作用于开腔的两个镜面上的场分布 可以镜面 S1 上场与镜面 S2 上场联系起来 经过 q 次传播后 根据上述的假设有公 1 2 式 2 2 1 1 对于对称开腔 当光波在腔内传播足够多次后 即在稳定情况下 镜面 S1 上光场传 播到 S2 出了表示振幅衰减和相位移动常数因子外 可以再现 形成这样一种 1 稳态场 分布不再受衍射的影响 在腔内往返一次后能够 再现 出发时的场分布 即实 现了模的 自再现 简化后有公式 3 和 4 3 1 4 2 2 Fox Li2 Fox Li 数值迭代法数值迭代法 积分方程 3 和 4 的解通过数学证明是存在的 但是实际求解是很困难的 所以 在大多数情况下只能使用近似方法求数值解 Fox Li数值迭代法就是运用标量近似来分析 模场特性 其运用的就是迭代的思想 其迭代公式为式 3 此方法的基本物理解释是将初始场分布视为由无数多个本征函数以一定比例叠加的结 果 不同的本征函数对应不同的模式 在腔内往返渡越过程中 不同模的衍射损耗不同 经过足够多次往返渡越后 衍射损耗大的模受到的衰减程度比衍射损耗小的模大得多 当 损耗大的模的贡献与损耗小的模的贡献相比可以忽略时 剩下的便是小损耗模的稳定场分 布 二 实现方案二 实现方案 基于 Matlab 激光谐振腔模式模拟 2 6 1 1 计算流程计算流程 跟据原理进行迭代计算的设计 流程图如图 1 所示 运用 Matlab 设计实现 Fox Li 数值迭代法程序的编写 2 2 矩形腔矩形腔 以矩形腔为例 说明 Fox Li 数值迭代法计算时的具 体形式 设矩形平面腔边长为 2a 2b 腔长为 L 它们之 间满足 在上述条件下 有如式 5 的近似 1 2 2 1 1 2 2 1 2 2 5 于是在菲涅耳 基尔霍夫衍射积分公式中的可以近 似写作 1 2 2 6 所以式 3 可以作为 2 2 2 2 7 对于上式 7 进行变量分离 设u x y u x u y 有 8 2 2 2 2 根据上述的公式在初始场分布设定的情况下就可以应用迭代的方法计算出分布情况 3 3 条形腔条形腔 条形腔是一种理想的模型 即一个方向有限长 而另一个方向上无限延伸的腔形 与 矩形腔类似 由于只在长度有限的那个方向上发生衍射现象 迭代公式 5 为一维的菲涅 耳 基尔霍夫衍射积分 9 2 2 将条形腔的左镜面 S1 上沿着 a a 之间划分 N 1 等分 则有 N 个点 每个区间为 2a N 1 右边镜面 S2 上每一点的求解都需将左边镜面上的点进行逐点相加 如此循环迭 代下去 最终会达到稳态分布 4 4 圆形腔圆形腔 离离散散处处理理 选选择择腔腔型型 输输入入具具体体参参数数 根根据据衍衍射射积积分分式式 进进行行迭迭代代 归归一一化化 显显示示 达达到到迭迭代代次次数数 或或是是达达到到判判据据 否否 结结束束停停止止 是是 图1 计算流程图 基于 Matlab 激光谐振腔模式模拟 3 6 圆形腔的迭代思想与矩形腔相同 只是划分与矩形腔不同 圆形腔是按照径向和角向 划分 在极坐标 r 下完成数值迭代 但在最后显示的时候 需要将极坐标还原成笛卡 尔坐标系 5 5 倾斜腔倾斜腔 严格的平行平面腔只是一种理想情况 实际情况下出现一定的不平行性是不可避免的 这里主要考察倾斜条形腔对自再现模的影响 如图 2 所示 图 2 倾斜平行平面腔的示意图 两个镜面相对其理想位置 即两镜面与其公共轴线严格垂直的位置 沿相反方向偏离同 样大小的微小角度 在镜的边缘处与理想位置的偏离线度 在 甚小的情况下 且只 考虑腔的旁轴光线 镜面上两点的距离 M1 M2 与理想情况下相应两点的距离 M1M2 之差为 1 2 1 2 10 于是有 于是衍射积分方程变为 1 2 11 2 2 类似于条形腔 可以计算出倾斜条形腔的自再现模 三 结果分析三 结果分析 1 1 矩形腔模式分布矩形腔模式分布 在对于模式分布的分析中菲涅耳数占据着重要地位 其定义为 Fres a 2 L 菲涅耳数是表征了衍射损耗的大小的量 菲涅尔数越大 衍射 损耗越小 当谐振腔的菲涅尔数较大时 低阶模式和高阶模式的衍射损耗非常 接近 高阶模在有限的迭代次数下不能有效地消除 而谐振腔的菲涅耳数比较 小时 高阶模具有更高的颜色损耗 从而更能够有效地抑制高阶模振荡 图3是fres为6 45 a分别是1mm b是0 5mm L是100mm 是1550nm 时的 模式稳态分布 振幅分布达到了稳定状态 呈现出近似高斯分布 而稳定后的 相位分布 曲线上的起伏较小 中间区域接近平面波分布 将具有这种特征的 横模称为腔的最低阶对称模或基模 方形镜腔和圆形镜腔的基模通常以符号 表示 00 图3 4 5是矩形腔分别是fres为6 45 2 98 0 155 a分别是 基于 Matlab 激光谐振腔模式模拟 4 6 1mm 0 68mm 0 15mm b是0 5mm L是100mm 是1550nm 时的模式稳态分布 对比这几幅图 可以看出镜面中心的振幅在菲涅耳数较大时可能不是最大的 较小时 中心振幅最大 并且振幅从中心向外是振荡下降的 菲涅耳数越大振 动的越厉害 菲涅耳数越小幅度曲线越平滑 更近似高斯分布 相位接近球面 波分布 由于平行平面腔的基模振幅分布是高斯分布 相位分布近似于球面波 分布 所以可以认为 在菲涅尔数较小的情况下 高阶模的损耗远大于基模的 图 3 fres 6 45 的模式稳态分布 图 4 fres 2 98 的模式稳态分布 基于 Matlab 激光谐振腔模式模拟 5 6 图 5 fres 0 155 的模式稳态分布 图 6 微小倾斜的模式分布 2 2 微小倾斜对模式分布的影响微小倾斜对模式分布的影响 实际中的谐振腔很难做到绝对的平行 运用程序模拟倾斜的条形腔如图6 所示 偏移的距离b为100 在b 100 的情形下 模场分布可以达到稳定 但是可以看出由于微小的偏移 振幅最大值有了偏移 而且已经不再对称 相 位的分布也产生了严重的畸变 随着偏移量b的增大 振幅到达稳定需要的迭代 次数越来越大 以至于最后可能完全无法达到稳定的分布状态 所以对于激光 器谐振腔而言 这种偏移是十分有害的 应当避免发生 3 3 菲涅耳数对圆形腔模式分布的影响菲涅耳数对圆形腔模式分布的影响 菲涅耳数对于圆形腔的的分析类似于矩形腔 图7 8是圆形腔半径a分别 为0 5mm 1mm时候的模场分布图 图中可以看出模场是以圆心为中心的中心对 称 圆心的振幅较大 向外延伸时 振幅下降 菲涅耳数越小 下降的越平滑 在实验过程中 发现菲涅耳数更小0 5mm的圆形腔在试验中更快的达到稳定 同 时可以看出在0 5mm是中心场很小 是一个暗斑 而1mm的圆形腔中心是一个亮 斑 可以通过改变几何参数来改变模场分布 以实现不同模式激光的输出 图7 a 0 5mm是圆形腔模场分布 图8 a 1mm是圆形腔模场分布 4 4 其他参数的影响 其他参数的影响 在模场分布计算中还有很多因素对最终结果有较大影响 比如划分点的个 数 初始场分布等等 对于划分点数 虽然是越多越精确 最终误差积累的越 少 但是点数太多会严重影响运算速度 特别是圆形腔 因此要选取适当的点 数 兼顾精度与效率 对于初始模场分布而言 对于能够最终稳定的结构而言 初始的模场分布的不同会使 模场演变的过程不同 也可能加长模场到达稳定 的时间 但是不会影响模场最终稳定后的分布结果 基于 Matlab 激光谐振腔模式模拟 6 6 四 设计体会四 设计体会 本次课程设计是对于激光原理的一种考查 同时对于编程方法的考查 具 体而言就是对于本次的Matlab的考查 首先是对于激光原理部分谐振腔的原理 计算公式 典型近似都有了更为 深刻地认识 更好的是 程序生成的图像对于几种腔型的模场分布有了更加直 观的认识 非常有利于理论与实际结合起来 其次是对于Matlab软件有了初次的接触 第一次使用这个软件 遇到了很 多的问题 但是在整个使用过程中不断感受到Matlab的强大 在编写过程中核 心算法 也就是菲涅耳 基尔霍夫衍射公式的近似积分方式 可以很快确定下来 而整个GUI界面与代码的联合是一个很耗时的过程 但是整个完成后很有成就感 在设计过程中遇到了很多的问题 更多的是程序编写上的问题 需要从最 开始的语法等来熟悉整个编程软件 然后在编写程序时 在最终的结果图像的 显示 三维图像的显示 积分循环的实现等问题都拖后了进度 翻阅了一些文 献后 有在同学帮助下 才得以解决 最后 有个建议 对于这个课程设计 我觉得老师可以抽一些上机时间对 于Matlab进行一些介绍 我想这个让我们编写程序时 上手更快 也可以更节 省精力 参考文献参考文献 1 杨克成 激光原理与技术
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁及其重要化合物(含解析)-2026届高中化学一轮复习讲义
- 外研版八年级英语下册Module2单元测试试卷及答案03
- 老年人压疮护理课件
- 老年人医学课件
- 四川省泸州市龙马潭区2024-2025学年高二语文上学期11月期中试题
- 山东省临沂市临沭县2024-2025学年七年级下学期期末考试生物试卷 (含答案)
- 人教版高考历史一轮复习讲义:现代中国的思想理论创新与科教文化
- CN120197082A 食盐碘含量检测数据的置信分选方法及系统
- 2019年7月国开电大法学本科《国际法》期末纸质考试试题及答案
- 老师培训藏品知识讲解课件
- 2025年安徽高中学业水平合格性考试化学试卷试题(含答案详解)
- 《低能耗建筑多排孔自保温砌块墙体体系应用技术规程》
- 有限空间监理实施细则
- 【五年级】语文上册课课练
- 防御台风复盘工作情况报告
- 拼音卡片(四线三格)
- 省级临床重点专科建设项目神经内科重点专科建设实施方案
- 一年级幼小衔接开学第一课系列:《会问好》教学课件
- 1.2 规划初中生活(课件)-2024-2025学年七年级道德与法治上册 (统编版2024)
- 2021年销售货款回收管理制度范本
- DB11-T+2260-2024中成药单位产品能源消耗限额
评论
0/150
提交评论