




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
量化投资 QUANTITATIVEINVESTMENT 投资策略生成器 目录 DIRECTORY 量化投资解读 01 行业发展状况 02 量化投资模块建立的必要性 03 量化投资模块的建立 04 一 量化投资解读 1 量化投资的定义 2 量化投资的特点 3 量化投资的应用 4 量化投资与传统投资的区别 01 量化投资是借助现代金融学 统计学和数学的方法 将投资理念和研究成果量化为客观的数理模型 同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种 大概率 事件以制定策略 然后用模型验证及固化这些规律和策略 严格执行已固化的量化策略来指导投资 以求获取可持续的 稳定且高于市场平均的超额回报的一种投资方式 Quantitativeinvestmentinterpretation 量化投资解读 量化投资定义 量化投资以先进的数理模型代替人为的主观判断 客服人性的弱点 如贪婪 恐惧和侥幸心理 也可以客服认知偏差 借助系统强大的信息处理能力 极大地减少投资者情绪的波动影响 避免在市场上极度狂热或悲观的情况下做出非理性的投资决策 统计学 计算机技术 投资理念 量化投资 高效 精准 迅速 分散 客观 客观执行 避免情绪因素 量化投资运用模型对历史和当时市场上的数据进行分析检测 模型一经检验合格投入正式运行后 投资决策将交由计算机处理 一般情况下拒绝人为的干预 支持大数据处理 提高决策效率 量化投资运用计算机技术快速处理大量数据 对其进行辨别 分析 找出数据之间的关联并做出投资决策 大大减少了人工工作量 提高了投资决策效率 统计模型支撑 策略选股择时精准 量化投资在套利策略中 能做到精准投资 例如在股指期货套利的过程中 现货与股指期货如果存在较大的差异时就能进行套利 量化投资策略和交易技术会抓住精确的捕捉机会 进行套利交易来获利 程序化交易 缩短决策与交易时滞 量化投资往往利用高速计算机进行程序化交易 能够迅速发现市场存在的信息并进行相应的处理 把握市场稍纵即逝的机会 在极短的时间内完成交易 标的选择分散多样化 靠概率取胜 一是定量投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用 这些历史规律都是有较大概率获胜的策略 二是依靠筛选出股票组合来取胜 而不是一个或几个股票取胜 从投资组合理念来看也是捕获大概率获胜的股票 而不是押宝到单个股票上 Quantitativeinvestmentinterpretation 量化投资解读 量化投资的应用 量化投资几乎覆盖了投资的全过程 包括量化选股 量化择时 股指期货套利 统计套利 算法交易和资产配置等 量化选股 采用数量的方法判断某个公司是否值得买入的行为 可以分为公司估值法 趋势法和资金法三大类 量化择时 我国股市存在经典线性相关之外的非线性相关 拒绝了随机游走的假设 指出股价的波动不是完全随机的 因此存在可预测成分 股指期货套利 指利用股指期货市场存在的不合理价格 同时参与股指期货与股票现货市场交易 或者同时进行不同期限 不同 但相近 类别股票指数合约交易 以赚取差价的行为 主要分为期现套利和跨期套利两种 统计套利 利用证券价格的历史统计规律进行套利 在方法上可以分为两类 一类是利用股票的收益率序列建模 称之为 中性策略 另一类是利用股票的价格序列的协整关系建模 我们称之为协整策略 算法交易 指使用计算机程序来发出交易指令 可以把不同算法交易分为被动型算法交易 主动型算法交易 综合型算法交易三大类 资产配置 指资产类别选择 投资组合中各类资产的适当配置以及对这些混合资产进行实时管理 Quantitativeinvestmentinterpretation 量化投资解读 传统投资 量化投资是由计算机自动产生交易策略的一种投资方法 通过建立数学模型来实现交易理念 它具有完整的评价体系 传统的投资方法主要有基本面分析法和技术分析法这两种 注重人为的分析和投资者的感觉 詹姆斯 西蒙斯 依据科学模型 信息来源广泛 海量数据和多层次信息 投资周期偏向短期 沃伦 巴菲特 依据人的经验与判断 信息来源渠道少 仅有基本面和宏观经济信息 投资周期偏向长期 VS 量化投资 标的组合分散化 多样化 投资于某一只或少量股票 风险考虑不周全 在风险最小化前提下实现收益最大化 代表人物 分析方法 信息来源 投资风格 投资标的 风险处理 Quantitativeinvestmentinterpretation 量化投资解读 量化投资与传统投资的区别 二 行业发展状况 1 国外发展状况 2 国内发展状况 3 国内产品现状 4 国内产品模式 02 第一阶段 量化投资的产生 60年代 第二阶段 量化投资的兴起 70 80年代 第三阶段 量化投资黄金十年 90年代 第四阶段 量化投资高速发展 2000年 至今 1967年 索普与希恩 卡索夫合著 战胜市场 一个科学的股票市场系统 该书是第一个精确的纯量化投资策略 股票市场系统可以正确地给可转换债券定价 估值 1973年 芝加哥大学教授费希尔 布莱克和迈 斯科尔斯提出 布莱克 斯科尔斯 公式 即期权定价理论 1983年 格里 班伯格提出在一组对应的股票中 价格会暂时出现异常 通过卖空价格高的股票 买入价格低的 在它们的价格恢复到历史均衡水平时平仓 即可获利 这就是著名的统计套利策略 马可维茨提出了资产组合选择理论 最早采用风险资产的期望收益率和用方差代表的风险来研究资产组合选择问题 资本资产定价模型提出系统风险和非系统风险 用贝塔系数来衡量系统风险的大小 并对非系统风险则 不能把所有鸡蛋放在一只篮子里 量化投资高速发展 2016年数据统计显示 量化科技在国外的理财产品管理规模已达到了3 2万亿美元 而通过计算机和数字模型进行下单和下达指令的比例达到了惊人56 量化投资基本实现了从最初的技术分析手段 逐渐发展演变为如今有金融理论支撑的金融设计工具 以计算机程序算法主导的高频交易 国外发展状况 Industrydevelopmentstatus 行业发展状况 量化投资起步晚 量化产品发行迅速 仍处于起步阶段 量化投资起步晚的主要原因有 A股市场的发展历史较短 投资者队伍参差不齐 投资理念还不够成熟 国内市场对冲工具单一 可量化的标的过少 受到交易规则的限制 量化投资不能充分发挥作用 很难引起人们重视 我国第一只量化投资基金成立于2004年 到2012年 共有18只量化基金产品成立 40只量化型阳光私募产品成立 仅2012年下半年 券商共发行量化产品132只 2013年上半年就已发行109只 1 产品总规模仍然较小 量化型理财产品实际发行规模为124 47亿元 仅占所有券商理财产品的4 2 量化基金产品总体规模为281 7亿元 仅占全部基金规模的1 06 2 量化类产品投资策略较为单一 缺乏多元化策略的支持 3 现有量化产品中多数产品投资业绩表现分化 缺乏稳定性和持续性 随着传统投资产品选股策略同质化程度日益增加 并且过度依赖于投资经理个人的主观判断 导致投资风险相对较高 在此背景下越来越多的基金 券商和私募开始关注量化投资 未来若干年国内量化投资必将迎来蓬勃发展的阶段 这是源于 1 量化投资在国外已经取得的成功经验 2 国内基础衍生产品市场的发展将为量化投资的发展提供有利的条件 3 资本市场制度建设的不断完善 4 量化人才队伍逐渐壮大 将加速量化投资在国内的发展 1 2 3 Industrydevelopmentstatus 行业发展状况 国内发展状况 量化投资未来发展前景广阔 提供量化商业服务 搭建一套覆盖策略研究 回测 模拟交易全流程的量化平台 提供量化商业平台服务 全方位为投资机构提供最专业的技术和产品支撑 国内产品现状 目前从事量化投资主要有两种商业模式 一种是提供量化商业平台服务 另一种就是建自有平台 Industrydevelopmentstatus 行业发展状况 目前国内量化投资平台的产品模式主要有两种 1 平台给用户提供编码的环境 让用户通过代码编译生成策略 其用户群体均拥有良好的编程基础 具备一定的专业技能 2 平台提供量化多因子让用户进行选择 这些量化因子包括但不限于行情指标 技术指标 财务指标和财报数据 用户通过选择搭配各指标数据 进而生成策略模型 其用户群体以个人投资者为主 国内产品模式 Industrydevelopmentstatus 行业发展状况 三 量化投资模块建立的必要性 1 完善投资服务体系 2 众多机构参与 重视发展前景 03 目前市场上的投资者大致可以分成三个等级 分别是普通投资者 中级投资者和高级投资者 建行投资服务体系中的智能投顾主要适用于普通投资者和部分中级投资者 资产比较庞大的客户通常会选择私人银行进行服务 客户分类 服务体系 资产规模 由表可知 当前的投资服务体系并没有完全覆盖所有客户群 部分中级投资者和大部分的高级投资者并没有相匹配的服务 而这部分客户却显得非常重要 因其具备投资理念和投资经验 一旦提供完善的服务体系 他们会进行持续而稳定的投资 量化投资模块能够提供良好的编码环境和全面的量化指标选择体系 投资者可以将成熟的投资理念在模块中表达出来 通过编程语言进行编译或者选择量化指标进行建模 形成一个策略模型 对该策略进行回测分析和优化 最终可以得到一个用于实盘操作的投资策略 由此可见 建立一个成熟的量化投资模块可以完善当前的服务体系 覆盖所有客群 满足专业投资者的投资需求 Thenecessityofestablishingquantitativeinvestmentmodule 量化投资模块建立的必要性 完善投资服务体系 最近两年来 越来越多的机构正在加快进入量化投资市场的步伐 它们看中量化投资良好的发展前景 积极寻求第三方量化平台进行合作或投资 打造专业化的量化交易和研究服务平台 目前机构和第三方量化公司合作推出的量化平台上线数量增长加快 涉及投资品种增多 券商推出服务客户的量化平台的速度也越来越快 但是还没有一家银行有传出类似的消息 Thenecessityofestablishingquantitativeinvestmentmodule 量化投资模块建立的必要性 众多机构参与 重视发展前景 四 量化投资模块的建立 1 量化投资模块的组成 2 量化标的选择 3 与行内业务的关联 04 量化投资模块的组成 模块支持层面 功能应用层面 面向用户 工具 编程语言 集成开发环境 交互式开发环境 系统 交易通道 仿真环境 期货策略 股票策略 价差套利策略 数据 指标计算 信号计算 实时交易数据提供和数据处理 研究分析 用户对复杂策略 已创建的策略或复制的策略 进行调试 支持灵活的图表处理 数据处理 支持导入第三方库 提供分钟级数据 构建策略 提供策略对应标的的背景信息 各类指标 宏观经济指标 技术指标和行情指标等 和公司财务数据等 策略回测 用来测试评估交易策略和投资组合 对除权 停牌 涨跌停等细节问题进行优先处理 保证数据的标准化 模拟交易 用户可以对调试好的策略进行样本外测试 所有的计算都在云端完成 目前构建量化模块的软件设备来源有两种 一种是直接采购或与第三方平台合作 优点 系统成熟 可以立即上线 市场认可程度高 用户体验较好 缺点 成本过高 包括后期的维护费用 系统风险可控程度低 另外一种是自主研发 优点 系统风险可控 与自有功能体系契合度高 缺点 开发成本大 周期长 需要专业技术人才 不稳定因素较多 Theestablishmentofquantitativeinvestmentmodule 量化投资模块的建立 量化投资标的已从传统的基金延伸到债券 股票 期货 外汇等领域 结合建行现有的投资产品 基金 外汇 贵金属和账户商品 我们从产品丰富度 数据更新频率 交易模式 交易费用 价格影响因素和技术分析成熟度六个维度进行分析 Theestablishmentofquantitativeinvestmentmodule 量化投资模块的建立 量化标的选择 投资产品丰富程度越高 量化可选标的就越全面 量化结果较单一产品就更具科学性 投资产品数据更新频率高 表明其行情波动特性强烈 利于做量化分析 投资产品交易制度完备 支持双向交易 投资转换效率就越高 就能更好满足量化交易需求 交易费用多元化体现 能够细分量化标的 使量化策略分析结果更准确 影响价格的因素较多 行情波动频率就越高 利于做量化分析 投资产品技术指标全面 分析体系成熟 会有利于量化策略的充分实施 综上所述 未来在建行的量化投资模块中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车零部件运输及仓储一体化服务采购合同5
- 2025年高性能船舶用窗户定制及抗海浪腐蚀适应性服务合同
- 2025年度二手车辆抵押贷款服务协议书
- 2025年度农家乐乡村旅游餐饮住宿综合管理服务合同
- 2025年度星级酒店节能照明改造设计与施工合同
- 2025年企业员工安置与健康管理一体化服务协议
- 2025年智慧矿山开采项目承包及智能化操作员培训服务协议
- 2025年生态保护区植被恢复与科研创新合作合同
- 2025年度金融机构房地产项目不可撤销信用证承兑合作协议
- 2025年度数字音乐版权互换与推广合作合同
- 2025年湖南湘西自治州州直事业单位招聘考试笔试试卷附答案
- 幼儿园安全责任书及后勤管理制度
- 消防车辆事故课件
- 《2型糖尿病中医防治指南(2024版)》解读课件
- 剑阁县普安镇污水处理厂扩容建设项目环评报告
- 商务楼宇管理办法
- 肺炎护理试题填空及答案
- 社用手机管理办法
- 心电监护操作常见并发症预防及处理
- 学校食堂各种检查记录表格表册11
- 中国兽药典三部 2020年版
评论
0/150
提交评论