数学人教版六年级下册《鸽巢原理例1、例2》_第1页
数学人教版六年级下册《鸽巢原理例1、例2》_第2页
数学人教版六年级下册《鸽巢原理例1、例2》_第3页
数学人教版六年级下册《鸽巢原理例1、例2》_第4页
数学人教版六年级下册《鸽巢原理例1、例2》_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鸽巢原理例鸽巢原理例 1 例 例 2 教学设计教学设计 武汉市光谷豹澥第一小学 马战勇 教学内容教学内容 人教版小学数学六年级下册第五单元 数学广角 鸽巢问题 第 68 70 页例 1 例 2 教材分析 数学广角 是人教版六年级下册第五单元的内容 在数学问题中 有一 类与 存在性 有关的问题 如任意 367 名学生中 一定存在两名学生 他们 在同一天过生日 在这类问题中 只需要确定某个物体 或某个人 的存在就 可以了 并不需要指出是哪个物体 或哪个人 也不需要说明通过什么方式把 这个存在的物体 或人 找出来 这类问题依据的理论 我们称之为 鸽巢原 理 本节课教材借助把 4 枝铅笔放进 3 个文具盒中的操作情境 介绍了一类较 简单的 鸽巢原理 即把 m 个物体任意分放进 n 个空鸽巢里 m n n 是非 0 自然数 那么一定有一个鸽巢中放进了至少 2 个物体 关于这类问题 学生在 现实生活中已积累了一定的感性经验 教学时可以充分利用学生的生活经验 放手让学生自主思考 先采用自己的方法进行 证明 然后再进行交流 在交 流中引导学生对 枚举法 反证法 假设法 等方法进行比较 使学生逐 步学会运用一般性的数学方法来思考问题 发展学生的抽象思维能力 让学生 通过本内容的学习 帮助学生加深理解 学会利用 鸽巢问题 解决简单的实 际问题 在此过程中 让学生初步经历 数学证明 的过程 实际上 通过 说理 的方式来理解 鸽巢原理 的过程就是一种数学证明的雏形 有助于 提高学生的逻辑思维能力 为以后学习较严密的数学证明做准备 还要注意培 养学生的 模型 思想 这个过程是将具体问题 数学化 的过程 能从纷繁 的现实素材中找出最本质的数学模型 是体现学生数学思维和能力的重要方面 设计理念设计理念 1 用具体的操作 将抽象变为直观用具体的操作 将抽象变为直观 总有一个文具盒中至少放进 2 支铅笔 这句话对于学生而言 不仅说起来 生涩拗口 而且抽象难以理解 怎样让学生理解这句话呢 我觉得要让学生充 分的操作 一在具体操作中理解 总有 和 至少 二在操作中理解 平均分 是保证 至少 的最好方法 通过操作 最直观地呈现 总有一个文具盒中至 少放进 2 支铅笔 这种现象 让学生理解这句话 2 充分发挥学生学习的主动能动性 让学生在证明结论的过程中探究方法 总充分发挥学生学习的主动能动性 让学生在证明结论的过程中探究方法 总 结规律 结规律 学生是学习的主动者 特别是这种原理的初步认识 不应该是教师牵着学 生手去认识 而是创造条件 让学生自己去探索 发现 所以我认为应该提出 问题 让学生在具体的操作中来证明他们的结论是否正确 3 适当把握教学要求适当把握教学要求 对于鸽巢原理的问题很抽象 因此在教学中不需要求学生说理的严密性 也 不需要学生确定过于抽象的 鸽巢 和 物体 只要求学生解决比较简单与生 活联系紧密的 鸽巢 问题 教学目标教学目标 1 知识与技能 初步了解和掌握鸽巢原理 会用鸽巢原理解决简单的实 际问题 2 过程与方法 经历鸽巢原理的探究过程 培养学生的观察 猜测 实 验以及逻辑推理能力 3 情感 态度和价值观 通过应用鸽巢原理解决实际问题 使学生体验 数学与生活的密切联系 感悟数学的魅力 教学重点教学重点 经历探究鸽巢原理的过程 理解鸽巢原理的含义 教学难点教学难点 会灵活地应用鸽巢原理解决生活中的实际问题 教学方法教学方法 1 注重直观教学 变抽象为直观注重直观教学 变抽象为直观 教师在课堂上要引导学生借助学具 自主动手操作 通过直观操作 一是让学生理解 总有 至少 这些抽象的词语含义 从而让学 生充分理解 每个杯子里至少放几根小棒 的含义 二是让学生理解 平均分 是保证至少的最好方法 2 注重学生罗辑思维能力的训练 充分发挥学生的主观能动性注重学生罗辑思维能力的训练 充分发挥学生的主观能动性 适时引导学生对枚举法和假设法进行比较 并通过逐步类推 使学 生逐步理解 抽屉问题 的 一般化模型 2 完善评价体系完善评价体系 提高学生学习数学的热情提高学生学习数学的热情 进行小组合作学习 激励学生全员参与 增加团队协作意识 体验 成功的乐趣 教学准备教学准备 学生准备 每组 5 根小棒 4 个杯子 学生记录自己是哪一个月出生的 教师准备 准备 1 副牌 学具 每个小组准备 5 个杯子 6 根小棒 课件 课时安排课时安排 一课时 教学过程教学过程 一 情境导入 1 师 你们以前玩过抢座位的游戏吧 教室里我们准备了 3 把椅子 我们 请 4 位同学上来抢座位 2 游戏 抢座位 3 白板出示 思考问题 为什么 4 名同学抢 3 把椅子 总有 2 个同学抢到同一把椅子 想知道其 中的奥秘吗 其实这里面蕴含着一个非常著名的原理 就是今天我们将共 同探究的鸽巢原理 4 板书课题 鸽巢原理 二 动手实验 探究新知 白板出示操作要求 1 动手实验 将 4 根小棒放入 3 个杯子里 请各个 小组的同学摆一摆 活动要求 每个小组分工合作 4 根小棒都要放进杯 子里 有的杯子可以空着 2 交流展示 学习小组派代表到台前展示成果 要求学生边摆边说 老师同时在 黑板上板书草图 放大镜放大摆放的各种情况 可能会出现 4 种不同的摆放方法 1 4 0 0 2 3 1 0 3 2 2 0 4 2 1 1 引导学生明确虽然摆放的顺序不一样 但是同一种放法引导学生明确虽然摆放的顺序不一样 但是同一种放法 3 引导观察 发现规律 1 师 观察这 4 种放法 你有什么发现 生 我发现 如果把 4 根小棒放入 3 个杯子里 不管怎么放 总有 一个杯子里至少放了 2 根小棒 老师即时加以强调肯定老师即时加以强调肯定 2 师 哪种方法可以保证每个杯子放的小棒个数最少 生 把 4 根小棒平均放入 3 个杯子里可以保证每个杯子放的小棒个 数最少 师 为什么用平均分这一种方法 就能得出总有一个杯子里的至少有 2 根小棒这个结论 生 假设把 4 根小棒平均放到 3 个杯子里 那么每个杯子里可以各放 一根小棒 还剩下一根小棒 无论放到哪个杯子里 总有一个杯子里会放有 2 根小棒 师 说得太棒了 并及时板书 4 3 1 根 1 根 4 研究把 5 根小棒放到 4 个杯子里的情况 师 再往下继续研究 5 根小棒放在 4 个小杯子里你感觉会出现什么情况 生猜测 5 根小棒放在 4 个小杯子 不管怎么放 肯定有一个杯子里至少有 2 根小棒 师 对不对需要实验验证 我们还要像刚才那样一一把所有摆法都列举出来吗 用什么方法操作验证这个结论对错就可以了 生 用平均分的方法就可以了 师 对 用平均分的方法可以很快得出结论 并引导学生写出算式 5 4 1 根 1 根 5 白板出示 学以致用 照这样的思路 继续往前走 1 把 9 根小棒放入 7 个小杯子里 总有一个杯子里至少有 根小棒 2 把 100 根小棒放入 99 个小杯子里 总有一个杯子里至少有 根小棒 3 把 9 根小棒放入 4 个杯子里 总有一个杯子里至少有 根小棒 4 把 9 根小棒放入 2 个杯子里 总有一个杯子里至少有 根小棒 5 把 9 根小棒放入 3 个杯子里 总有一个杯子里至少有 根小棒 学生说出自己的推理结论 老师同时点评并板书 1 9 7 1 根 2 根 2 100 99 1 根 1 根 3 9 4 2 根 1 根 4 9 2 4 根 1 根 5 9 3 3 根 小结 如果平均放 不管怎么放 总有一个杯子里至少有商或 商 1 根小棒 6 深化研究 得出结论 课件出示例 2 1 把 7 本书放进 3 个抽屉 不管怎么放 总有 1 个抽屉里至少放进 3 本书 为什么 引导学生用假设推理的方法说出理由 老师点评并板书 7 3 2 本 1 本 2 如果有 8 本书怎么样呢 10 本书呢 9 本书呢 教师小结并板书 如果平均放 不管怎么放 总有一个抽屉里至少有商或 商 1 本书 7 了解鸽巢原理 多媒体播放 师 同学们知道吗 我们今天发现的原理其实早在 200 多年前就被德国数学家 狄里克雷发现了 请看大屏幕 学生读资料 抽屉原理 又称 鸽笼原理 最先是由 19 世纪的德国数学家狄里克雷提出 来的 所以又称 狄里克雷原理 这一原理在解决实际问题中有着广泛的应用 师 回想我们刚才做的小棒和杯子的实验中 谁相当于抽屉 鸽笼 那小棒 就可以看作是被放进抽屉的物体 鸽子 师 把 m 个物体任意放进 n 个抽屉里 m n n 是非 0 自然数 如果 m n b c 那么一定有一个抽屉至少放进了多少个物体 板书 b 1 个 三 联系生活 运用原理三 联系生活 运用原理 1 5 只鸽子飞进 3 只鸽笼 为什么总有 2 只鸽子飞进同一只鸽笼 多媒 体展示鸽子飞进鸽笼的动画过程 2 我们班有 名同学 至少有 名同学同一个月 过生日呢 你是怎么想的 3 我们小学有 2188 名学生 至少有几人是同一天出生的 四 师生总结 四 师生总结 这节课的探究学习中 我们一起来经历了与德国数学家狄里克雷一样的伟 大发现过程 回顾一下 你有什么收获 生活中还有很多这样的例子 老师 相信你们会运用今天所学的抽屉原理去解决生活问题 五 作业设计五 作业设计 课本练习十二的第二题 第四题 六 板书

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论