




已阅读5页,还剩67页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2章信号分析基础 2 1确知信号分析 2 2随机信号分析 第2章信号分析基础 清华大学出版社 1 通过本章的学习 了解信号的各种类型 理解确知信号与随机信号的基本概念 熟练掌握周期信号 非周期信号的频谱特征及计算 掌握自相关函数 互相关函数和能量谱 功率谱的含义 计算方法和相互关系 学会计算随机过程的统计特征 概率分布和数字特征 理解平稳过程的类型 含义 各态历经性质及频谱分析 掌握随机过程通过线性系统后统计特征的变换关系 理解高斯过程 窄带过程 高斯白噪声 高斯窄带白噪声的统计特征及功率谱表示 教学目标 第2章信号分析基础 清华大学出版社 2 在通信系统中 信号是信息的载体和表达形式 也是传输 处理的对象 根据信号参数的确知程度 可将其分为确知信号和随机信号两大类 确知信号的特征是 无论是过去 现在和未来的任何时间 其取值总是唯一确定的 如一个正弦波形 当幅度 频率和初相均为确定值时 它就属于确知信号 它就是一个完全确定的时间函数 其变化规律可以用确知的函数表达式 第2章信号分析基础 清华大学出版社 3 进行描述 随机信号是指其全部或某个参量具有随机性的时间信号 亦即信号的某一个或多个参量具有不确定取值 因此在它未发生之前或未对它具体测量之前 这种取值是不可预测的 通信系统中传输的信号和噪声都是随机信号 比如 语音信号及图像信号的瞬时值变化规律是不可预知 如果用它们对正弦载波进行调制 则得到的已调信号的参数 振幅 频率或相位 都不能完全预知其函数形式 因此都是随机信号 第2章信号分析基础 清华大学出版社 4 通信系统中的信号和噪声都是随机的 对随机信号和噪声的分析是学习通信原理必备的工程数学基础 本章第二节主要介绍随机信号分析方法 这种分析方法贯穿于本课程的各个章节 是通信系统性能分析尤其是抗噪声性能分析的精髓 对确知信号主要采用时域和频域方法进行分析 这些方法在 信号与系统 课程已经介绍过 考虑到知识的连贯性 本章第一节主要从应用的角度提纲挈领进行概括性归纳 总结与复习 第2章信号分析基础 清华大学出版社 5 2 1确知信号分析 2 1 1确知信号的分类 2 1 2确知信号的频域特征 傅里叶变换 2 1 3功率谱密度和能量谱密度 2 1 4卷积和相关 2 1 5确知信号通过线性时不变系统 第2章信号分析基础 清华大学出版社 6 如果表征信号的所有参数都是可以确定的 这样的信号就叫确知信号 又称为确定信号 本节对常见确知信号及其变换进行介绍 为后续各章节的学习提供必要的理论基础 第2章信号分析基础 清华大学出版社 7 从数学的观点来分析 信号总可以表示为某些独立变量的函数 按信号可以表示为几个变量的函数划分 将信号分为一维信号和n维信号 一维信号是一个独立变量的函数 n维信号是n个独立变量的函数 图2 1和图2 2所示分别为二维信号和三维信号 2 1 1确知信号的分类 1 一维信号和n维信号 第2章信号分析基础 清华大学出版社 8 图2 1波形的二维描述 第2章信号分析基础 清华大学出版社 时间 幅度 9 图2 2波形的三维描述 第2章信号分析基础 清华大学出版社 10 信号一般都是独立时间变量的函数 按信号的持续时间划分 可将其分为时限信号和非时限信号 时限信号只在一定的时间范围内存在 而非时限信号则不受时间限制 可在整个时间轴上一直存在 分别如图2 3和图2 4所示 2 时限信号和非时限信号 第2章信号分析基础 清华大学出版社 11 图2 3时限信号 图2 4非时限信号 第2章信号分析基础 清华大学出版社 12 按信号是否是时间的连续函数划分 将信号分为连续时间信号和离散时间信号 一个信号 如果在某个时间区间内除有限个间断点外都有定义 就称该信号在此区间内为连续时间信号 简称连续信号 如图2 5所示 仅在离散时刻上有定义的信号称为离散时间信号 简称离散信号 如图2 6所示 这里 离散 一词表示自变量只取离散的数值 相邻离散时刻点的间隔可以是相等的 也可以是不相等的 在这些离散时刻点以外 信号无定义 3 连续信号和离散信号 第2章信号分析基础 清华大学出版社 13 图2 5连续时间信号 第2章信号分析基础 清华大学出版社 信号幅度有无穷多个取值 14 图2 6离散时间信号 第2章信号分析基础 清华大学出版社 信号幅度只有有限个取值 15 按信号是否具有重复性 将信号划分为周期信号和非周期信号 一个连续信号 若对所有t均有 4 周期信号和非周期信号 时间和幅度都连续的信号又称为模拟信号 连续信号经过抽样 在时间上进行离散化 就得到抽样信号 将抽样信号的幅度再离散化 就可得到数字信号 抽样信号和数字信号统称为离散信号 第2章信号分析基础 清华大学出版社 16 则称为连续周期信号 如图2 7所示 满足上式的最小T值称为的周期 周期信号也可以表示为 不具有重复性的信号均为非周期信号 如图2 8所示 其中是在一个周期T内的波形 称为基本波形 第2章信号分析基础 清华大学出版社 17 图2 7周期信号 图2 8非周期信号 第2章信号分析基础 清华大学出版社 18 按信号的能量特性划分 将信号分为能量信号和功率信号 若将信号设为电压或电流 则加载在单位电阻上产生的瞬时功率为 在一定的时间区间内会消耗一定的能量 把该能量对时间区间取平均 即得信号在此区间内的平均功率 对时间区间取极限 则信号的能量E和功率P定义为 5 能量信号和功率信号 第2章信号分析基础 清华大学出版社 19 如果在无限大时间区间内信号的能量为有限值 此时平均功率S 0 则称该信号为能量有限信号 简称能量信号 2 2 2 1 第2章信号分析基础 清华大学出版社 20 如果在无限大时间区间内信号的平均功率为有限值 此时信号能量E 则称此信号为功率有限信号 简称功率信号 2 4 2 3 类似地 离散信号的能量和功率定义为 第2章信号分析基础 清华大学出版社 21 可见 能量信号与功率信号是不相容的 能量信号的总平均功率 在整个时间轴上进行时间平均 等于0 而功率信号的能量等于无限大 一个信号 不可能既是能量信号又是功率信号 少数信号既不是能量信号也不是功率信号 通常 周期信号和随机信号是功率信号 确知的非周期信号为能量信号 第2章信号分析基础 清华大学出版社 22 从信源发出的信号 是原始的电波形 主要能量集中在低频段甚至含有丰富的直流分量 没有经过任何调制 频谱搬移 因此称为基带信号 如语音 视频信号等 它们均可由低通滤波器取出或限定 故又称为低通型信号 为了适应绝大多数信道的传输 特别是无线通信信道 需将携带源信息的基带信号频谱搬移到某一指定的高频载波附近 6 基带信号与频带信号 第2章信号分析基础 清华大学出版社 23 成为带通型信号 或者说 以载波的某个参量 振幅 频率或相位 变化受控于基带信号或数字码流 使载波的参量随基带信号的变化而变化 这种受控后的载波就称为已调信号 它就是带通型的频带信号 其频带被限制在以载频为中心的一定带宽范围内 第2章信号分析基础 清华大学出版社 24 信号的传输或处理离不开系统 系统可以看作是信号的 处理器 或 变换器 系统在输入信号的驱动之下经过 变换 和 处理 产生所需的输出信号 因此将输入信号常称为 激励 而把输出信号称之为 响应 信号通过电路或系统时 通常有时域和频域两种分析方法求其响应 在本课程中 对信号的频谱进行分析和信号通过系统的频域分析显得尤为重要 2 1 2确知信号的频域特征 傅里叶变换 第2章信号分析基础 清华大学出版社 25 确知信号按其重复性可以分为周期信号和非周期信号 分析周期信号和非周期信号的频域特性 频谱 采用了两种不同的数学工具 分析周期信号的数学工具是傅里叶级数 分析非周期信号的数学工具是傅里叶变换 第2章信号分析基础 清华大学出版社 26 任何一个周期信号 周期为 只要满足狄里赫利条件 就可以展开为正交序列之和 即傅里叶级数 周期信号的傅里叶级数有三角形式和指数形式两种表达形式 三角形式的傅里叶级数表示式为 1 周期信号的频谱分析 傅里叶级数 2 5 第2章信号分析基础 清华大学出版社 27 和称为傅里叶系数 代表直流分量 由级数理论知 傅里叶系数为 2 6 式中是信号基波分量的角频率简称基频 第2章信号分析基础 清华大学出版社 28 式 2 5 和 2 6 表明 任何满足狄里赫利条件的周期信号都可以分解为直流分量和一系列谐波分量的叠加 而各次谐波分量的频率均为基频的整数倍 实际工程中遇到的周期函数大多满足狄里赫利条件 2 7 指数形式的傅里叶级数表达式为 第2章信号分析基础 清华大学出版社 29 显然 Fn是的函数 即 Fn实际上反映了周期信号的傅里叶级数表示式中频率为的信号分量的幅度和相位 通常称之为频谱 其大小描述了幅度随时间变化的关系称为幅度谱 其相位描述了相位随时间变化的关系称为相位谱 2 8 其中复系数 第2章信号分析基础 清华大学出版社 30 指数形式的傅里叶级数表明 任意周期信号可分解为许多不同频率的虚指数信号之和 其各分量的复数幅度 或相量 就是Fn 由于指数形式表达简洁 便于计算 且物理概念清楚 在通信中广泛应用 应该注意 周期性信号的三角傅氏级数和指数傅氏级数只是同一信号的两种不同表示形式 前者为实数形式的傅里叶级数 将周期信号表示 第2章信号分析基础 清华大学出版社 31 为直流分量和一系列谐波分量之和 后者为复数形式的傅里叶级数 将周期信号分解为直流分量和一系列虚指函数之和 傅里叶级数的指数形式仅仅是一种数学表示形式 其实质与三角形式的傅里叶级数展开式是完全一致的 在虚指表示式中 n N中的两项只是第N次谐波用指数形式表示的两个分量 n N时所对应的分量丝毫不意味着有负的角频率或频率存在 只具数学意义或理论意义 第2章信号分析基础 清华大学出版社 32 例2 1 已知一周期矩形信号 幅度为A 脉宽为 周期为T 如图2 9 a 所示 求的频谱及其指数形式的傅里叶级数 a 第2章信号分析基础 清华大学出版社 图2 9周期矩形脉冲及其频谱 33 根据式 2 8 求得频谱为 解 在一个周期 T 2 T 2 内 第2章信号分析基础 清华大学出版社 34 据此画出的双边频谱 如图2 9 b 所示 显然 频谱的包络分布服从抽样函数分布规律 幅度呈衰减振荡且出现周期性的零点 式中称为抽样函数 由此得周期矩形信号的傅里叶级数指数形式为 第2章信号分析基础 清华大学出版社 35 b 图2 9周期矩形脉冲及其频谱 第2章信号分析基础 清华大学出版社 36 1 离散性 周期信号的频谱中各谱线是不连续的 所有频谱均由最小间隔为基频的谱线组成 由于谱线之间的最小间隔为基频 而 故信号的周期决定了谱线之间的最小间隔 信号周期T越大 基频就越小 谱线之间越密 反之 T越小 越大 谱线之间越疏 由于 周期信号的频谱具有如下几个共同特性 第2章信号分析基础 清华大学出版社 37 3 收敛性 即幅度衰减特性 实际工程中遇到的绝大多数信号 其幅值谱线将随频率的增加而不断衰减 并最终趋于零 非周期信号可以看作是的周期信号 因此可以预见 非周期信号的频谱应该是连续谱 2 谐波性 谱线只出现在基频整数倍的频率位置上 第2章信号分析基础 清华大学出版社 38 令周期信号的重复周期 则可将其视为非周期信号 为了描述非周期信号的频谱特性 引入了频谱密度的概念 非周期信号的频谱密度定义为 2 9 2 10 2 非周期信号的频谱分析 傅里叶变换 经推导有 第2章信号分析基础 清华大学出版社 39 式 2 9 和 2 10 为一个傅里叶变换对 式 2 9 称为的傅里叶变换 即频谱密度函数 简称频谱 式 2 10 称为傅里叶逆变换 已知频谱即可求出信号的时域表达式 时间信号与其傅里叶变换是一一对应的关系 知其一可求其另一 故简记为 2 11 第2章信号分析基础 清华大学出版社 40 傅里叶变换提供了信号在频域和时域之间的相互变换关系 一般来说 一个时间信号如果满足狄里赫利条件 则此信号一定存在傅里叶变换 但这只是充分条件并不是必要条件 因为有些信号虽然不满足此条件 但是却存在傅里叶变换 如单位冲激信号和单位阶跃信号就是具体的例子 第2章信号分析基础 清华大学出版社 41 例2 2 已知一非周期矩形信号如图2 10 a 所示 求其频谱 图2 10非周期矩形脉冲及其频谱 第2章信号分析基础 清华大学出版社 42 解 矩形脉冲信号又称为门函数 表达式为 2 12 即 第2章信号分析基础 清华大学出版社 直接利用傅里叶变换的定义式 2 9 求得矩形脉冲信号的频谱为 43 傅里叶变换是信号时域分析和频域分析的桥梁 在理论分析和工程实际中都有着广泛的应用 熟练掌握傅里叶变换是非常重要的 为方便使用 将通信工程上常用信号的傅氏变换列于表2 1中 由此绘出矩形脉冲信号的频谱如图2 10 b 所示 由图可以看出非周期矩形信号的频谱是一个连续谱 第2章信号分析基础 清华大学出版社 44 表2 1常见信号的频谱函数 信号 频谱 信号 频谱 第2章信号分析基础 清华大学出版社 45 傅里叶变换又存在许多重要的性质 这些性质揭示了信号时域与频域之间的内在联系 灵活熟练地运用这些特性 一方面可以简化这种变换的求解 另一方面又有助于我们深入理解这种变换的数学过程和物理本质 傅里叶变换的运算性质归纳如表2 2所示 第2章信号分析基础 清华大学出版社 46 表2 2傅里叶变换的性质 域时 频域 第2章信号分析基础 清华大学出版社 47 第2章信号分析基础 清华大学出版社 48 在通信工程上我们经常遇到信号功率和能量的计算问题 计算信号功率和能量可以在时域进行 也可以在频域进行 为此引入功率谱密度和能量谱密度 通信工程中还常常应用功率谱和能量谱确定信号的带宽 2 1 3功率谱密度和能量谱密度 第2章信号分析基础 清华大学出版社 49 可见 信号的能量谱密度只与信号幅度谱有关 而与其相位谱无关 于是 能量信号的能量为 2 14 2 13 焦耳 1 能量谱密度 假设能量信号的频谱为 则信号的能量谱密度定义为 第2章信号分析基础 清华大学出版社 50 上式称为帕塞瓦尔定理 帕塞瓦尔定理表明 从时域和频域计算信号的能量 或功率 是等价的 根据傅里叶变换 可以推得 2 15 2 功率谱密度 第2章信号分析基础 清华大学出版社 51 为信号的功率谱密度 它代表了信号功率沿频率轴的分布 则功率信号的平均功率为 2 16 2 17 瓦 一般定义 对时间信号在区间上取截短函数 且有 则信号的平均功率为 第2章信号分析基础 清华大学出版社 52 卷积和相关是现代通信中应用十分广泛的时域运算 卷积积分是描述传输信号和线性系统之间相互关系的一种分析方法 而相关这是描述信号波形之间相似性或关联性的一种测度 卷积有卷积积分 连续信号 和卷积和 离散信号 之分 这里只介绍卷积积分 相关有自相关和互相关之分 2 1 4卷积和相关 第2章信号分析基础 清华大学出版社 53 卷积运算常用的方法有公式法和图解法 公式法直接利用式 2 18 计算 图解法主要有以下几步 2 18 1 卷积 时间信号 的卷积定义为 第2章信号分析基础 清华大学出版社 第2章信号分析基础 清华大学出版社 54 积分结果即为卷积结果 1 变换 将 中的全变为 得到 2 反褶 将沿纵轴反转 得到 3 移位 将沿轴移动个单位 得到 4 乘积 将与相乘 得到 5 积分 将乘积进行积分 得到 第2章信号分析基础 清华大学出版社 55 卷积的运算遵循以下几个定律 2 21 2 20 2 19 1 交换律 2 分配律 3 结合律 第2章信号分析基础 清华大学出版社 56 如果 则有 2 23 2 22 4 卷积定理 第2章信号分析基础 清华大学出版社 57 式 2 22 称为时域卷积定理 式 2 23 称为频域卷积定理 卷积定理表明 时域卷积运算可以转化为频域相乘 频域卷积运算也可以转化为时域相乘 利用卷积定理可以避免烦琐的卷积积分运算 本课程中 常常应用时域卷积定理在已知激励和系统冲击响应时求解系统响应的频谱函数 常常应用频域卷积定理分析调制器的频谱 第2章信号分析基础 清华大学出版社 58 相关有自相关和互相关之分 所谓自相关是指一个信号与延迟之后的同一个信号的关联程度 所谓互相关是指一个信号与延迟之后的另一个信号的关联程度 2 25 2 24 若为功率信号 则其自相关函数定义为 若为能量信号 则其自相关函数定义为 1 自相关函数 2 相关 59 2 29 2 28 2 27 2 26 自相关函数具有如下性质 自相关函数是偶函数 是的上界 功率信号的功率为 能量信号的能量为 第2章信号分析基础 清华大学出版社 60 设 为两个不同的功率信号 则其互相关函数定义为 2 互相关函数 2 30 2 31 设 为两个不同的能量信号 则其互相关函数定义为 第2章信号分析基础 清华大学出版社 61 当为任意值时 若 则两个时间信号互不相关 互相关函数具有如下性质 2 33 2 32 当时 有 当时 而有 第2章信号分析基础 清华大学出版社 62 设能量信号 则 2 35 2 34 3 自相关函数与能量谱密度函数 功率谱密度函数的关系 相关定理 由式 2 13 知 是能量信号的能量谱 所以说自相关函数和能量谱密度是一对傅里叶变换对 即 且 第2章信号分析基础 清华大学出版社 63 同样的方法可以分析得到 对于功率信号 其自相关函数和功率谱密度也是一对傅里叶变换对 即 2 36 第2章信号分析基础 清华大学出版社 64 线性系统分析主要有时域分析和频域分析两种基本方法 且叠加原理是成立的 也即当几个确知信号同时加到系统激励端 输出等于各个信号单独作用产生的响应之和 如图2 11所示为一线性时不变系统 其中 为激励信号及其频谱 为输出信号及其频谱 分别为系统的冲击响应和系统函数 即有 第2章信号分析基础 清华大学出版社 2 1 5确知信号通过线性时不变系统 65 所谓时域分析就是利用线性系统的冲激响应 时间信号经此线性系统产生的响应为 图2 11线性系统 第2章信号分析基础 清华大学出版社 66 式 2 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七下苏科版数学试卷
- 信息系统安全审查报告
- 盘龙区2024下学期数学试卷
- 吕梁市联考高三数学试卷
- 智能化工设备数据采集与处理报告
- 梁溪区期末数学试卷
- 医学知识培训感言课件
- 2025年抽纱刺绣工艺品项目建议书
- 2025年网络程序员开发能力考核试题及答案解析
- 2025山东大学材料科学与工程学院非事业编制人员招聘2人考试备考题库及答案解析
- XXX加油站风险分级管控台账
- 甘12J8 屋面标准图集
- 购买设备合同
- 特种设备安全管理-使用知识
- H35-462(5G中级)认证考试题库(附答案)
- HY/T 122-2009海洋倾倒区选划技术导则
- GB/T 19666-2019阻燃和耐火电线电缆或光缆通则
- GA/T 1241-2015法庭科学四甲基联苯胺显现血手印技术规范
- 小学和初中科学教学衔接
- 制造执行系统的功能与实践最新ppt课件(完整版)
- 人工智能遥感解译介绍课件
评论
0/150
提交评论