




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.3向量数乘运算及其几何意义学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一向量数乘的定义思考1实数与向量相乘结果是实数还是向量?答案为:向量.思考2向量3a,3a与a从长度和方向上分析具有怎样的关系?答案为: 3a的长度是a的长度的3倍,它的方向与向量a的方向相同.3a的长度是a的长度的3倍,它的方向与向量a的方向相反.思考3a的几何意义是什么?答案为:a的几何意义就是将表示向量a的有向线段伸长或压缩.当|1时,表示a的有向线段在原方向(0)或反方向(0)上伸长为原来的|倍.梳理向量数乘运算实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,其长度与方向规定如下:(1)|a|=|a|.(2)a (a0)的方向特别地,当=0或a=0时,0a=0或0=0.知识点二向量数乘的运算律思考类比实数的运算律,向量数乘有怎样的运算律?答案为: 结合律,分配律.梳理向量数乘运算律(1)(a)=()a;(2)()a=aa;(3)(ab)=ab.知识点三向量共线定理思考1若b=2a,b与a共线吗?答案为:根据共线向量及向量数乘的意义可知,b与a共线.如果有一个实数,使b=a(a0),那么b与a是共线向量;反之,如果b与a(a0)是共线向量,那么有且只有一个实数,使得b=a.思考2若b与非零向量a共线,是否存在满足b=a?若b与向量a共线呢?答案为:若b与非零向量a共线,存在满足b=a;若b与向量a共线,当a=0,b0时,不存在满足b=a.梳理(1)向量共线定理向量a (a0)与b共线,当且仅当有唯一一个实数,使b=a.(2)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a、b,以及任意实数、1、2,恒有(1a2b)=1a2b.类型一向量数乘的基本运算例1.(1)化简:2(2a4b)4(5a2b).(2)已知向量为a,b,未知向量为x,y,向量a,b,x,y满足关系式:3x2y=a,4x3y=b,求向量x,y.反思与感悟(1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.跟踪训练1.(1)计算:(ab)3(ab)8a.(2)若2(cb3y)b=0,其中a,b,c为已知向量,则未知向量y=_.类型二向量共线的判定及应用命题角度1判定向量共线或三点共线例2.已知非零向量e1,e2不共线.(1)若a=e1e2,b=3e12e2,判断向量a,b是否共线.(2)若=e1e2,=2e18e2,=3(e1e2),求证:A、B、D三点共线.反思与感悟(1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b=a(a0),还要说明向量a,b有公共点.跟踪训练2.已知非零向量e1,e2不共线,如果=e12e2,=5e16e2,=7e12e2,则共线的三个点是_.命题角度2利用向量共线求参数值例3.已知非零向量e1,e2不共线,欲使ke1e2和e1ke2共线,试确定k的值.反思与感悟利用向量共线定理,即b与a(a0)共线b=a,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3.已知A,B,P三点共线,O为直线外任意一点,若=xy,则xy=_.类型三用已知向量表示其他向量例4.在ABC中,若点D满足=2,则等于()A. B. C. D.反思与感悟用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中.(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量.(3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练4.如图,在ABC中,D,E为边AB的两个三等分点,=3a,=2b,求,.1.已知a=5e,b=3e,c=4e,则2a3bc等于()A.5e B.5e C.23e D.23e2.在ABC中,M是BC的中点,则等于()A. B. C.2 D.3.设e1,e2是两个不共线的向量,若向量m=e1ke2 (kR)与向量n=e22e1共线,则()A.k=0 B.k=1 C.k=2 D.k=4.已知ABC的三个顶点A,B,C及平面内一点P,且=,则()A.P在ABC内部 B.P在ABC外部C.P在AB边上或其延长线上 D.P在AC边上5.如图所示,已知=,用,表示.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如a,a是没有意义的.2.a的几何意义就是把向量a沿着a的方向或反方向扩大或缩小为原来的|倍.向量表示与向量a同向的单位向量.3.向量共线定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题.4.已知O,A,B是不共线的三点,且=mn(m,nR),A,P,B三点共线mn=1.课时作业一、选择题1.下列说法中正确的是()A.a与a的方向不是相同就是相反B.若a,b共线,则b=aC.若|b|=2|a|,则b=2aD.若b=2a,则|b|=2|a|2.在ABC中,如果AD,BE分别为BC,AC上的中线,且=a,=b,那么等于()A.ab B.ab C.ab D.ab3.如图,AB是O的直径,点C,D是半圆弧AB上的两个三等分点,=a,=b,则等于() A.ab B.ab C.ab D.ab4.在ABC中,已知D是AB边上的一点,若=,则等于()A. B. C. D.5.设D为ABC所在平面内一点,=3,则()A.= B.=C.= D.=6.已知m,n是实数,a,b是向量,则下列命题中正确的是()m(ab)=mamb;(mn)a=mana;若ma=mb,则a=b;若ma=na,则m=n.A. B. C. D.二、填空题7.已知=a5b,=2a8b,=3(ab),则_三点共线.8.设向量a,b不平行,向量ab与a2b平行,则实数=_.9.(a9b2c)(b2c)=_.10.在ABCD中,=a,=b,=3,M为BC的中点,则=_.(用a,b表示)三、解答题11.如图所示,设M,N为ABC内的两点,且=,=,求ABM的面积与ABN的面积之比. 12.若非零向量a与b不共线,ka2b与3akb共线,试求实数k的值.13.在平行四边形ABCD中,M,N分别是DC,BC的中点,已知=c,=d,试用c,d表示和.四、探究与拓展14.已知向量a,b是两个不共线的向量,且向量ma3b与a(2m)b共线,则实数m的值为_.15.已知在四边形ABCD中,=a2b,=4ab,=5a3b,求证:四边形ABCD为梯形.答案解析例1.解:2(2a4b)4(5a2b)=(4a8b20a8b)=(16a16b)=4a4b.(2)已知向量为a,b,未知向量为x,y,向量a,b,x,y满足关系式:3x2y=a,4x3y=b,求向量x,y.解:由32,得x=3a2b,代入得3(3a2b)2y=a,所以x=3a2b,y=4a3b.跟踪训练1.解:(ab)3(ab)8a=(a3a)(b3b)8a=2a4b8a=10a4b.(2)答案为:abc;解析:因为2(cb3y)b=0,3yabc=0,所以y=abc.例2.(1)解:b=6a,a与b共线.(2)证明:=e1e2,=2e18e23e13e2=5(e1e2)=5.,共线,且有公共点B,A、B、D三点共线.跟踪训练2.答案为:A,B,D;解析:=e12e2,=5e16e27e12e2=2(e12e2)=2.,共线,且有公共点B,A,B,D三点共线.例3.解:ke1e2与e1ke2共线,存在实数,使ke1e2=(e1ke2),则(k)e1=(k1)e2,由于e1与e2不共线,只能有k=1.跟踪训练3.答案为:1;解析:由于A,B,P三点共线,则,在同一直线上,由向量共线定理可知,一定存在实数使得=,即=(),=(1).x=1,y=,则xy=1.例4.答案为:D;解析:示意图如图所示,由题意可得=()=.跟踪训练4.解:=3a,=2b,=2b3a,又D,E为边AB的两个三等分点,=ba,=3aba=2ab,=3a=3a(2b3a)=ab.1.答案为:C;解析:2a3bc=25e3(3e)4e=23e.2.答案为:C;解析:如图,作出平行四边形ABEC,M是对角线的交点,故M是BC的中点,且是AE的中点,由题意知,=2,故选C.3.答案为:D;解析:当k=时,m=e1e2,n=2e1e2.所以n=2m,此时,m,n共线.4.答案为:D;解析:=,=2,P在AC边上.5.解:=()=.1.答案为:D;解析:显然当b=2a时,必有|b|=2|a|.2.答案为:A;解析:由题意,得=b=b()=ba,即=ba,解得=ab.3.答案为:D;解析:连接CD,OD,如图所示. 点C,D是半圆弧AB上的两个三等分点,AC=CD,CAD=DAB=90=30.OA=OD,ADO=DAO=30.由此可得CAD=ADO=30,ACDO.由AC=CD,得CDA=CAD=30,CDA=DAO,CDAO,四边形ACDO为平行四边形,=ab.4.答案为:B;解析:A,B,D三点共线,=1,=.5.答案为:A;解析:=3,=3(),即4=3,=.6.答案为:B解析:和属于数乘对向量与实数的分配律,正确;中,若m=0,则不能推出a=b,错误;中,若a=0,则m,n没有关系,错误.7.答案为:A,B,D;8.答案为:;解析:向量a,b不平行,a2b0,又向量ab与a2b平行,则存在唯一的实数,使ab=(a2b)成立,即ab=a2b,则解得=.9.答案为:a10b;10.答案为:ba;解析:如图,=ba=ba(ab)=(ba).11.解:如图所示,设=,=,则=.由平行四边形法则知,MQAB,=.同理=.=.12.解:ka2b与3akb共线,存在实数,使得ka2b=(3akb),(k3)a(2k)b=0,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影视基地装饰装修施工质量保证措施
- 文化传媒服务管理措施及专项保障措施
- 玻镁板轻钢龙骨隔墙施工现场作业措施
- 环境污染事故应急处理措施
- 排球场施工后期维护技术措施
- 骨科医疗质量自查及整改措施
- 商务印刷服务定制合同书
- 体育场馆设施使用合同
- 家用智能售粮管理系统合作协议
- 产品外包装设计制作协议
- 民用无人机操控员执照(CAAC)考试复习重点题库500题(含答案)
- 人教版六年级数学上册教案全册
- 学校生活指导老师面试问题
- 安防项目视频周界报警系统招投标书范本
- 烹饪概论高职全套教学课件
- 骨科患者的疼痛管理
- 2023年秋季国家开放大学-03593-机械制造装备及设计期末考试题带答案
- 建设用地报批服务投标方案(技术方案)
- 【公司财务风险管理问题分析国内外文献综述3000字】
- 仁爱版英语九年级(上)全册课文翻译(互译版)
- 小学学生素质教育报告单
评论
0/150
提交评论