计量经济学2ppt课件.ppt_第1页
计量经济学2ppt课件.ppt_第2页
计量经济学2ppt课件.ppt_第3页
计量经济学2ppt课件.ppt_第4页
计量经济学2ppt课件.ppt_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CHAPTER2 AREVIEWOFBASICSTATISTICALCONCEPTS 2 1SOMENOTATION 1 TheSummationNotationcanbeabbreviatedas or2 PropertiesoftheSummationOperator 2 2EXPERIMENT SAMPLESPACE SAMPLEPOINT ANDEVENTS 1 ExperimentAstatistical randomexperiment aprocessleadingtoatleasttwopossibleoutcomeswithuncertaintyastowhichwilloccur 2 SamplespaceorpopulationThepopulationorsamplespace thesetofallpossibleoutcomesofanexperiment3 SamplePointSamplePoint eachmember oroutcome ofthesamplespace orpopulation 4 EventsAnevent acollectionofthepossibleoutcomesofanexperiment thatis itisasubsetofthesamplespace Mutuallyexclusiveevents theoccurrenceofoneeventpreventstheoccurrenceofanothereventatthesametime Equallylikelyevents oneeventisaslikelytooccurastheotherevent Collectivelyexhaustiveevents eventsthatexhaustallpossibleoutcomesofanexperiment 2 3RANDOMVARIABLES Arandom stochasticvariable r v forshort avariablewhose numerical valueisdeterminedbytheoutcomeofanexperiment 1 Adiscreterandomvariable anr v thattakesononlyafinite oraccountablyinfinite numberofvalues 2 Acontinuousrandomvariable anr v thatcantakeonanyvalueinsomeintervalofvalues 2 4PROBABILITY 1 TheClassicalorAPrioriDefinition Ifanexperimentcanresultinnmutuallyexclusiveandequallylikelyoutcomes andifmoftheseoutcomesarefavorabletoeventA thenP A theprobabilitythatAoccurs ism nTwofeaturesoftheprobability 1 Theoutcomesmustbemutuallyexclusive 2 Eachoutcomemusthaveanequalchanceofoccurring 2 RelativeFrequencyorEmpiricalDefinitionFrequencydistribution howanr v aredistributed Absolutefrequencies thenumberofoccurrenceofagivenevent Relativefrequencies theabsolutefrequenciesdividedbythetotalnumberofoccurrence EmpiricalDefinitionofProbability ifinntrials orobservations mofthemarefavorabletoeventA thenP A theprobabilityofeventA issimplytherationm n thatis relativefrequency providedn thenumberoftrials issufficientlylargeInthisdefinition wedonotneedtoinsistthattheoutcomebemutuallyexclusiveandequallylikely 2 4PROBABILITY 3 Propertiesofprobabilities 1 0 P A 1 2 IfA B C aremutuallyexclusiveevents then P A B C P A P B P C 3 IfA B C aremutuallyexclusiveandcollectivelyexhaustivesetofevents P A B C P A P B P C 1 2 4PROBABILITY Rulesofprobability 1 IfA B C areanyevents theyaresaidtobestatisticallyindependenteventsif P ABC P A P B P C P 2 IfeventsA B C arenotmutuallyexclusive thenP A B P A P B P AB ConditionalprobabilityofA givenBConditionalprobabilityofB givenA 2 5RANDOMVARIABLESANDPROBABILITYDISTRIBUTIONFUNCTION PDF Theprobabilitydistributionfunctionorprobabilitydensityfunction PDF ofarandomvariableX thevaluestakenbythatrandomvariableandtheirassociatedprobabilities 1 PDFofaDiscreteRandomVariableDiscreter v X takesonlyafinite orcountablyinfinite numberofvalues Probabilitydistributionorprobabilitydensityfunction PDF itshowshowtheprobabilitiesarespreadoverordistributedoverthevariousvaluesoftherandomvariableX PDFofadiscreter v X f X P X Xi fori 1 2 3 n0forX Xi 2 PDFofaContinuousRandomVariableTheprobabilityforacontinuousr v isalwaysmeasuredoveranintervalForacontinuousr v theprobabilitythatsuchanr v takesaparticularnumericalvalueisalwayszero 3 CumulativeDistributionFunction CDF F X P X x P X x theprobabilitythatther v Xtakesavalueoflessthanorequaltox wherexisgiven Infact aCDFismerelyan accumulation orsimplythesumofthePDFforthevaluesofXlessthanorequaltoagivenx CDFofadiscreter v stepfunction CDFofacontinuousr v continuouscurve 2 6MULTIVARIATEPROBABILITYDENSITYFUNCTIONS 1 Two variate BivariatePDFSingle UnivariateprobabilitydistributionfunctionsMultivariateprobabilitydistributionfunctionsTwo variate BivariatePDFJointprobability theprob thatther v XtakesagivenvalueandYtakesagivenvalue Bivariate jointPDF f X Y 1 DiscretejointPDF f X Y P X x Y y 0whenX x Y y 2 ContinuousjointPDF omitted 2 MarginalProbabilityDensityFunction TherelationshipbetweentheunivariatePDFs f X orf Y andthebivariatejointPDF ThemarginalprobabilityofX theprobabilitythatXassumesagivenvalueregardlessofthevaluestakenbyY ThemarginalPDFofX thedistributionofthemarginalprobabilities sumthejointprob correspondingtothegivenvalueofXregardlessofthevaluestakenbyY ThemarginalPDFofY sumthejointprob correspondingtothegivenvalueofYregardlessofthevaluestakenbyX 3 ConditionalProbabilityDensityFunction 1 discreteconditionalPDFSconditionalPDFofY f Y X P Y y X x conditionalPDFofX f X Y P X x Y y TheconditionalPDFofonevariable giventhevalueoftheothervariable issimplytheratioofthejointprobabilityofthetwovariablesdividedbythemarginalorunconditionalPDFoftheother i e theconditioning variable X of probability marginal the Y and X of probability joint the X f Y X f X Y F Y of probability marginal the Y and X of probability joint the Y f Y X f Y X F 2 6MULTIVARIATEPROBABILITYDENSITYFUNCTIONS 4 StatisticalIndependenceIndependentrandomvariables TwovariablesXandYarestatisticallyindependentifandonlyiftheirjointPDFcanbeexpressedastheproductoftheirindividual ormarginal PDFsforallcombinationsofXandYvalues f X Y f X f Y 2 7CHARACTERISTICS MOMENTSOFPROBABILITYDISTRIBUTIONS 1 ExpectedValue AMeasureofCentralTendency 1 DefinitionExpectedValue ameasureofcentraltendency givesthecenterofgravity Theexpectedvalueofadiscreter v isthesumofproductsofthevaluestakenbyther v andtheircorrespondingprobabilities 2 Propertiesofexpectedvalue Ifaandbareconstants then E b bE X Y E X E Y E XY E X E Y ifX Yareindependentr v E aX aE X E aX b aE X E b aE X b 2 7CHARACTERISTICS MOMENTSOFPROBABILITYDISTRIBUTIONS 2 Variance AMeasureofDispersion 1 DefinitionofthevarianceofX theexpectedvalueofthesquareddifferencebetweenanindividualXvalueanditsexpectedormeanvalue 2 ComputethevarianceDiscrete 3 PropertiesofvarianceIfaandbareconstantsvar a 0IfX Yaretwoindependentr v thenvar X Y var X var Y var X Y var X var Y var X b var X var aX a2var X var aX b a2var X var aX bY a2var X b2var Y 3 Covariance characteristicsofmultivariatePDFs 1 Definition Covarianceisameasureofhowtwovariablesvaryormovetogether Ifthetwor v moveinthesamedirection thenthecovcov X Y E X x Y y E XY x yDiscrete 2 PropertiesofcovarianceIfXandYareindependentr v thencov X Y 0Ifa b c dareconstants thencov a bX c dY bdcov X Y cov X X var X 4 CorrelationCoefficient 1 Definitionofthecorrelationcoefficient ameasureoflinearassociationbetweentwovariables i e howstronglythetwovariablesarelinearlyrelated 2 Propertiesofcorrelationcoefficient 1 1If0 1twovariablesarepositivelycorrelated 1 0negativelycorrelated 3 VariancesofcorrelatedvariablesIfX Yarenotindependent thatis theyarecorrelated thenvar X Y var X var Y 2cov X Y var X Y var X var Y 2cov X Y y x Y X s s r cov 5 ConditionalExpectationunconditionalexpectation conditionalexpectation6 TheSkewnessandtheKurtosisofaPDFmomentsofthePDFofar v Xfirstmoment E X xsecondmoment E X x 2thirdmoment E X x 3n thmo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论