




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12999数学网参考公式:如果事件、互斥, 那么如果事件、互斥独立, 那么第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】B【解析】由题得: ,所以:,故点睛:本题要熟练理解补集的含义,然后再根据交集的定义便可求解2. 复数,若,则实数的值是( )A. B. C. D. 【答案】D点睛:要知道复数是不能比较大小的,如果复数能比较大小,只能说明这个复数是一个实数,所以要求虚部为零3. 在我国明代数学家吴敬所著的九章算术比类大全中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯? ” (加增的顺序为从塔顶到塔底). 答案应为 ( )A. B. C. D. 【答案】D【解析】设顶层有盏灯,根据题意得:故选D.点睛:这一个等比数列的实际运用,认真审题然后分析列式即可4. 已知函数,其中,从中随机抽取个,则它在上是减函数的概率为 ( )A. B. C. D. 【答案】B点睛:几何概型要读懂题意找到符合条件的基本事件,然后根据几何概型的计算公式求解即可.5. 在中,给出满足条件,就能得到动点的轨迹方程下表给出了一些条件及方程:条件方程 周长为面积为中,则满足条件,的轨迹方程依次为( )A. B. C. D. 【答案】A【解析】 周长为,则,根据椭圆定义:点A的轨迹方程为椭圆,面积为,则点A到直线BC的距离为定值5,所以点A的轨迹方程为抛物线, 中,,则点A在以BC为直径的圆上,所以点A的轨迹方程是. 点睛:本题要熟悉椭圆、抛物线、圆的方程的定义,根据定义进行推理即可.6. 已知的取值范围是,执行下面的程序框图,则输出的的概率为( )A. B. C. D. 【答案】B 7. 一个几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D. 【答案】C【解析】由三视图复原几何体可得:它是一个侧放的四棱锥,它的底面是直角梯形,一条侧棱的长垂直于底面,高为2,这个几何体的体积:.故选C. 点睛:根据几何体求体积,主要熟悉椎体的计算公式即可.8. 若圆上只有一点到双曲线的一条渐近线的距离为,则该双曲线离心率为 ( )A. B. C. D. 【答案】A点睛:根据题意分析出圆上怎样才能是只有一个点到渐近线的距离是1,可得只有当圆心到渐近线距离为2时才满足要求,便可列出等式求解.9. 已知,则的大小关系是( )A. B. C. D. 【答案】C【解析】由题得:,而,所以而,又,所以c最小,又,又,所以,故选C点睛:本题较难,主要是对对数和指数的运算的考察,在比较大小时,先判定各数的符号,然后可以借助中间值0或1进行比较,也可以作差或作商进行比较10. 已知满足约束条件,若目标函数的最大值为,则( )A. 有最小值 B. 有最大值C. 有最小值 D. 有最大值【答案】A【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11. 函数与的图象上存在关于轴对称的点,则实数的取值范围是( )A. B. C. D. 【答案】C点睛:特殊值法,当遇到比较麻烦难解的题型时,我们可以根据备选答案信息进行对答案验证,从而得出选项.此做法比较适用于选择题12. 将函数的图象向左平移个单位,得函数的图象(如图) ,点分别是函数图象上轴两侧相邻的最高点和最低点,设,则的值为( )A. B. C. D. 【答案】D【解析】将函数的图象向左平移个单位,得函数得,由图可知:,中,利用余弦定理可得:,所以:= 点睛:根据平移规则求出,然后根据三角想余弦定理可求出,再根据三角和差公式进行求解即可,要注意计算的准确性.第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则在方向上的投影为_【答案】【解析】,得,将代入上式,得在方向上的投影为,故答案为. 14. 已知抛物线,点,点在抛物线上,当点到抛物线准线的距离与点到点的距离之和最小时,延长交抛物线于点,则的面积为_【答案】点睛:本题主要运用抛物线的性质,根据性质可得出三点共线时和最小,然后根据抛物线焦点弦长公式和点到直线距离公式便可求得三角想面积.15. 已知两个等高的几何体在所有等高处的水平截面的面积相等,则这两个几何体的体积相等. 椭球体是椭圆绕其轴旋转所成的旋转体. 如图(1)将底面直径皆为,高皆为的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面上. 以平行于平面的平面于距平面任意高处可横截得到及两截面,可以证明总成立. 则短轴长为,长轴为的椭球体的体积为_【答案】【解析】根据题意可得:椭半球体的体积等于圆柱截去圆锥所剩下部分的体积,所以椭半球体体积为,故椭球体的体积为点睛:主要读懂题目所描述的新的定义,然后根据定义及几何关系建立等式从而求解.16. 对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和等于_【答案】点睛:本题考察导数的意义切线方程的求法,然后根据题意可知数列为以公比为3的等比数列,在利用等比求和公式得出结论三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 中,角所对的边分别为,向量 ,且的值为. (1)求的大小;(2)若 ,求的面积.【答案】(1);(2). 18. 如图,四棱锥中,底面是矩形,平面底面,且是边长为的等边三角形,在上,且面.(1)求证: 是的中点;(2)求多面体的体积.【答案】(1)见解析; (2) .【解析】(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点. (2)取中点,连.则,由面底面,得面,.点睛:(1)根据线面平行的结论可得,从而得到M是中点,(2)求体积最主要的思维就是先解决几何体的高,然后根据体积公式求解即可,当然对于不规则的解题则要借助于补形的思想利用规则几何体的体积减或加来解决问题.19. 全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数,数据统计如下:空气质量指数空气质量等级空气优空气良轻度污染中度污染重度污染天数(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成頻率分布直方图:(2)由頻率分布直方图,求该组数据的平均数与中位数;(3)在空气质量指数分别为和的监测数据中,用分层抽样的方法抽取天,从中任意选取天,求事件“两天空气都为良”发生的概率.【答案】(1)见解析;(2)平均数 ,中位数.(3) .点睛:频率分布直方图要注意每个小矩形的面积才代表频率,而频率分布直方图的中位数求法则是找面积和为0.5的地方的数,平均数则是取每组组距的中间值乘以对应组的频率,然后求和即可,对于古典概型,只要将题意理解清楚将基本事件一一列出来,找出符合条件的基本事件根据古典概型的计算公式即可求出概率20. 设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为,连接椭圆的四个顶点得到的菱形面积为. (1)求椭圆的方程;(2)设过点的直线被椭圆和圆所截得的弦长分别为,当最大时,求直线的方程.【答案】(1);(2)或.点睛:对于圆锥曲线的题型,在做题时首先要题中的几何关系理解清楚,最好可以画出草图帮助自己理解,然后根据几何关系建立等式求解,对于第二问在求解范围及最值问题时首先要明确表达式,然后根据基本不等式或者函数求最值方法来求解范围问题.21. 已知函数. (1)若时,讨论函数的单调性;(2)若,过作切线,已知切线的斜率为,求证:.【答案】(1)见解析;(2) 见解析. (2),设切点,斜率为 所以切线方程为 ,将代入得: 由 知代入得:,令,则恒成立,在单增,且,令,则,则在递减,且.点睛:熟悉求导的公式及运算法则,分类讨论以确定导数的正负来确定函数的单调性对于不等式的证明问题要住以分离参数的方法应用,不等式问题的证明要学会转化为恒成立问题求最值的方法来解决问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知曲线的极坐标方程为,过点的直线交曲线于两点.(1)将曲线的极坐标方程的化为普通方程;(2)求的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 百色市中石化2025秋招笔试模拟题含答案市场营销与国际贸易岗
- 国家能源莆田市2025秋招面试专业追问及参考计算机与自动化岗位
- 国家能源大连市2025秋招笔试逻辑推理题专练及答案
- 江西地区中石化2025秋招面试半结构化模拟题及答案数智化与信息工程岗
- 运城市中储粮2025秋招笔试题库含答案
- 长治市中储粮2025秋招笔试题库含答案
- 宜宾市中石化2025秋招笔试模拟题含答案油田工程技术岗
- 中国联通黄冈市2025秋招笔试模拟题及答案
- 中国移动吉安市2025秋招网申填写模板含开放题范文
- 民航知识考试试题及答案
- 2025年合肥市轨道交通集团有限公司第二批次社会招聘12人考试历年参考题附答案详解
- 甘肃电网考试题目及答案
- 2025年专升本医学影像检查技术试题(含参考答案)解析
- 《互联网应用新特征》课件+2025-2026学年人教版(2024)初中信息技术七年级全一册
- 过节前安全培训课件
- 高二生物上学期第一次月考(安徽专用)(全解全析)
- 模具安全操作注意培训课件
- 3.2《参与民主生活 》- 课件 2025-2026学年度道德与法治九年级上册 统编版
- 农产品电子商务运营 教学大纲、教案
- 2025年秋新北师大版数学2年级上册全册同步教学设计
- 抖音短视频签约合同范本
评论
0/150
提交评论