7种量化选股模型_第1页
7种量化选股模型_第2页
7种量化选股模型_第3页
7种量化选股模型_第4页
7种量化选股模型_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7 7 种量化选股模型种量化选股模型 1 1 多因子模型多因子模型 2 2 风格轮动模型风格轮动模型 3 3 行业轮动模型行业轮动模型 4 4 资金流模型资金流模型 5 5 动量反转模型动量反转模型 6 6 一致预期模型一致预期模型 7 7 趋势追踪模型趋势追踪模型 1 1 多因子模型多因子模型 多因子模型是应用最广泛的一种选股模型 基本原理是采用一系列的因子作为 选股标准 满足这些因子的股票则被买入 不满足的则卖出 基本概念基本概念 举一个简单的例子 如果有一批人参加马拉松 想要知道哪些人会跑到平均成 绩之上 那只需在跑前做一个身体测试即可 那些健康指标靠前的运动员 获 得超越平均成绩的可能性较大 多因子模型的原理与此类似 我们只要找到那 些对企业的收益率最相关的因子即可 各种多因子模型核心的区别第一是在因子的选取上 第二是在如何用多因子综 合得到一个最终的判断 一般而言 多因子选股模型有两种判断方法 一是打分法 二是回归法 打分法就是根据各个因子的大小对股票进行打分 然后按照一定的权重加权得 到一个总分 根据总分再对股票进行筛选 回归法就是用过去的股票的收益率对多因子 进行回归 得到一个回归方程 然 后再把最新的因子值代入回归方程得到一个对未来股票收益的预判 然后再以 此为依据进行选股 多因子选股模型的建立过程主要分为候选因子的选取 选股因子有效性的检验 有效但冗余因子的剔除 综合评分模型的建立和模型的评价及持续改进等 5 个步 骤 2 候选因子的选取候选因子的选取 候选因子的选择主要依赖于经济逻辑和市场经验 但选择更多和更有效的因子 无疑是增强模型信息捕获能力 提高收益的关键因素之一 例如 在 2011 年 1 月 1 日 选取流通市值最大的 50 支股票 构建投资组合 持有到 2011 年底 则该组合可以获得 10 的超额收益率 这就说明了在 2011 年这段时间 流通市值与最终的收益率之间存在正相关关系 从这个例子可以看出这个最简单的多因子模型说明了某个因子与未来一段时间 收益率之间的关系 同样的 可以选择其他的因子 例如可能是一些基本面指 标 如 PB PE EPS 增长率等 也可能是一些技术面指标 如动量 换手率 波动等 或者是其它指标 如预期收益增长 分析师一致预期变化 宏观经济 变量等 同样的持有时间段 也是一个重要的参数指标 到底是持有一个月 还是两个 月 或者一年 对最终的收益率影响很大 选股因子有效性的检验选股因子有效性的检验 一般检验方法主要采用排序的方法检验候选因子的选股有效性 例如 可以每 月检验 具体而言 对于任意一个候选因子 在模型形成期的第一个月初开始计算市场 中每只正常交易股票的该因子的大小 按从小到大的顺序对样本股票进行排序 并平均分为 n 个组合 一直持有到月末 在下月初再按同样的方法重新构建 n 个组合并持有到月末 每月如此 一直重复到 模型形成期末 上面的例子就已经说明了这种检验的方法 同样的可以隔 N 个月检验 比如 2 个月 3 个月 甚至更长时间 还有一个参数是候选组合的数量 是 50 支 还 是 100 支 都是非常重要的参数 具体的参数最优的选择 需要用历史数据进 行检验 有效但冗余因子的剔除有效但冗余因子的剔除 不同的选股因子可能由于内在的驱动因素大致相同等原因 所选出的组合在个 股构成和收益等方面具有较高的一致性 因此其中的一些因子需要作为冗余因 子剔除 而只保留同类因子中收益最好 区分度最高的一个因子 例如成交量 指标和流通量指标之间具有比较明显的相关性 流通盘越大的 成交量一般也 会比较大 因此在 选股模型中 这两个因子只选择其中一个 冗余因子剔除的方法 假设需要选出 k 个有效因子 样本期共 m 月 那么具体 的冗余因子剔除步骤为 1 先对不同因子下的 n 个组合进行打分 分值与该组合在整个模型形成期的 收益相关 收益越大 分值越高 2 按月计算个股的不同因子得分间的相关性矩阵 3 在计算完每月因子得分相关性矩阵后 计算整个样本期内相关性矩阵的平 均值 4 设定一个得分相关性阀值 MinScoreCorr 将得分相关性平均值矩阵中大 于该阀值的元素所对应的因子只保留与其他因子相关性较小 有效性更强的因 子 而其它因子则作为冗余因子剔除 3 综合评分模型的建立和选股综合评分模型的建立和选股 综合评分模型选取去除冗余后的有效因子 在模型运行期的某个时间开始 例 如每个月初 对市场中正常交易的个股计算每个因子的最新得分并按照一定的 权重求得 所有因子的平均分 最后 根据模型所得出的综合平均分对股票进行 排序 然后根据需要选择排名靠前的股票 例如 选取得分最高的前 20 股票 或者选取得分 最高的 50 到 100 只股票等等 举个例子 可以构建一个多因子模型为 PE PB ROE 在月初的时候 对这 个几个因子进行打分 然后得分最高的 50 个股票作为投资组合 在下个月按 照同样的方法进行轮换替换 持续一段时间后 考场该投资组合的收益率是否 跑赢比较基准 这就是综合评分模型的建立和后验过程 当然这个例子是一个最简单的例子 实战中的模型可能会比较复杂 比如沃尔 评分法就是一个复杂的多因子模型 它是对股票进行分行业比较 算个每个行 业的得分高的组合 然后再组合成投资篮子 模型的评价及持续改进模型的评价及持续改进 一方面 由于量选股的方法是建立在市场无效或弱有效的前提之下 随着使用 多因子选股模型的投资者数量的不断增加 有的因子会逐渐失效 而另一些新 的因素可 能被验证有效而加入到模型当中 另一方面 一些因子可能在过去的 市场环境下比较有效 而随着市场风格的改变 这些因子可能短期内失效 而 另外一些以前无效 的因子会在当前市场环境下表现较好 另外 计算综合评分的过程中 各因子得分的权重设计 交易成本考虑和风险 控制等都存在进一步改进的空间 因此在综合评分选股模型的使用过程中会对 选用的因子 模型本身做持续的再评价和不断的改进以适应变化的市场环境 多因子的模型最重要是两个方面 一个是有效因子 另外一个是因子的参数 例如到底是 PE 有效还是 ROE 有效 到底是采用 1 个月做调仓周期还是 3 个月做 调仓 周期 这些因子和参数的获取只能通过历史数据回测来获得 但是在回测 过程中 要注意 不能过度优化 否则结果可能反而会不好 2 2 风格轮动模型风格轮动模型 市场上的投资者是有偏好的 有时候会偏好价值股 有时候偏好成长股 有时 候偏好大盘股 有时候偏好小盘股 由于投资者的这种不同的交易行为 形成 了市场风格 因此在投资中 利用市场风格的变化 进行轮动投资会比一直持 有的效果好很多 基本概念基本概念 投资风格是针对股票市场而言的 是指投资于某类具有共同收益特征或共同价 格行为的股票 即某类投资风格很受欢迎 并且在某一个时间段内具有持续性 4 和连续性 譬如 价值投资和成长型投资两种风格 或者大盘股和小盘股这两种 风格总是轮流受到市场追捧 由于投资风格的存在 从而产生一种叫做风格动量的效应 即在过去较短时期 内收益率较高的股票 未来的中短期收益也较高 相反 在过去较短时期内收 益率较低的股票 在未来的中短期也将会持续其不好的表现 比如 在 2009 年是小盘股风格 小盘股持续跑赢沪深 300 指数 而在 2011 年 则是大盘股风格 大盘股跌幅远远小于沪深 300 指数 如果能事先通过一种 模型判断未来的风格 进行风格轮动操作 则可以获得超额收益 晨星风格箱判别法晨星风格箱判别法 晨星风格箱法是一个 3 3 矩阵 从大盘和小盘 价值型和成长型来对基金风格 进行划分 介于大盘和小盘之间的为中盘 介于价值型和成长型之间的为混合 型 共有 9 类风格 如表所示 1 规模指标 市值 通过比较基金持有股票的市值中值来划分 市值中值小 于 10 亿美元为小盘 大于 50 亿美元为大盘 10 亿 50 亿美元为中盘 2 估值指标 平均市盈率 平均市净率 基金所持有股票的市盈率 市净率 用基金投资于该股票的比例加权求平均 然后把两个加权平均指标和标普 500 成份股的市盈率 市净率的相对比值相加 对于标普 500 来说 这个比值和是 2 如果最后所得比值和小于 1 75 则为价值型 大于 2 25 为成长型 介于 1 7 5 2 25 之间为混合型 这也就是我们经常看到的基金的分类 比如 华夏大盘 海富小盘等名称的由 来 风格轮动的经济解释风格轮动的经济解释 宏观经济表现强劲时 小市值公司有一个较好的发展环境 易于成长壮大 甚至还会有高于经济增速的表现 因此 小盘股表现突出的概率高于大盘股 而当经 济走弱时 由于信心的匮乏和未来市场的不确定性 投资者可能会倾 向于选择大盘股 起到防御作用 即使低通货膨胀 货币走强 也不足以冒险 去选择小盘股 研究发现 经济名义增长率是用来解释规模效应市场周期的有力变量 当名义 增长率提高时 小市值组合表现更优 因为小公司对宏观经济变动更为敏感 当工业生产率提高 通货膨胀率上升时 小公司成长更快 5 案例大小盘风格轮动策略案例大小盘风格轮动策略 大小盘轮动最为投资者所熟知 本案例就 A 股市场的大小盘风格轮动进行实 证研究 通过建立普通的多元回归模型来探寻 A 股的大 小盘轮动规律 1 大小盘风格轮动因子如下 1 M2 同比增速 M2 同比增速为货币因素 表征市场流动性的强弱 当流 动性趋于宽松时 小盘股相对而言更容易受到资金的追捧 2 PPI 同比增速 PPI 反映生产环节价格水平 是衡量通胀水平的重要指 标 且 PPI 往往被看成 CPI 的先行指标 3 大 小盘年化波动率之比的移动均值 波动率表征股票的波动程度 同 时也在一定程度上反映投资者情绪 可以认为大 小盘年化波动率之比能够反映 出一段时间内大 小盘风格市场情绪的孰强孰弱 而经过移动平滑处理后的数值 则更加稳定 2 预测模型 基于上面所讲的风格因子建立如下回归模型 D Rt 1 MGt 1 2 PGt 3 3 t 3 t 其中 D Rt 为当月小 大盘收益率差 对数收益率 MGt 1 为上月 M2 同比 增速 PGt 3 为 3 个月前 PPI 同比增速 t 3 为 3 个月前小 大盘年化波动率 之比的移动平滑值 t 为误差项 本案例采用滚动 78 个月的历史数据对模型进行回归 得到回归系数后对后 一期的 D Rt 进行预测 由修正预测值的正负来进行大 小盘股的投资决策 数 据预测期为 2004 年 6 月至 2010 年 11 月 3 实证结果 在 78 个月的预测期中 准确预测的月数为 42 个月 准确率约为 53 85 并不十分理想 但值得一提的是 2009 年 10 月至 2010 年 12 月 模型的预测 效果非常好 若从 2004 年 6 月开始按照轮动策略进行投资 则截至 2010 年 11 月底轮动策略 的累计收益率为 307 16 同期上证综指的收益率为 81 26 小盘组合的累计 收益率为 316 97 轮动策略稍逊于小盘组合 但仍较大幅度地跑赢了市场指 数 轮动策略在 2007 年的大牛市中能够很好地跟随大盘股的节奏 而在 2009 年以 6 来的结构性行情中又能较好地捕捉小盘股的投资机会 若从 2007 年初开始采用 轮动策略进行投资 则截至 2010 年 11 月底累计收益率可达 458 65 大幅超 越同期上证综指及大 小盘组合的收益率 3 3 行业轮动模型行业轮动模型 与风格轮动类似 行业轮动是另外一种市场短期趋势的表现形式 在一个 完整的经济周期中 有些是先行行业 有些是跟随行业 例如 对某个地方基 础设施的投 资 钢铁 水泥 机械属于先导行业 投资完后会带来房地产 消 费 文化行业的发展 这就属于跟随行业 研究在一个经济周期中的行业轮动 顺序 从而在轮动开 始前进行配置 在轮动结束后进行调整 则可以获取超额 收益 国外许多实证研究表明 在环球资产配置中 行业配置对组合收益的贡献 的重要性甚至超过了国家配置 而且认为行业配置的重要性在未来相当长一段 时间内也将保持 行业轮动策略的有效性原因是 资产价格受到内在价值的影 响 而内在价值则随着宏观经济因素变化而波动 研究表明 板块 行业轮动在机构投资者的交易中最为获利的盈利模式是基 于行业层面进行周期性和防御性的轮动配置 这也是机构投资者最普遍采用的 策略 此外 周期性股票在扩张性货币政策时期表现较好 而在紧缩环境下则 支持非周期性行业 行业收益差在扩张性政策和紧缩性政策下具有显著的差异 在国内目前情况下 根据货币供应量的变化来判断货币政策周期 是一个 不错的选择 而 M2 正是广义的货币 反映了社会总需求的变化和未来通货膨胀 压力 M2 同比增速则可以反映流通中的货币供应量变化 即货币政策效果的 实际反应 因此 可以用 M2 来判断货币政策或者货币供应处于扩张还是紧缩的 周期 通过移动平均线平滑后的 M2 增速 将 2007 年 6 月至 2011 年 12 月划分成 表所示的几个货币周期 行业分类 周期性行业分类 周期性 VSVS 非周期性行业非周期性行业 为了将行业划分为周期性行业和非周期性行业 这里选取沪深 300 行业指 数 并且以沪深 300 指数作为市场组合 利用 CAPM 模型计算行业的 Beta 值和 均值方差 从 Beta 值来对行业的周期性和非周期性进行区分 周期性行业有能源 材料 工业和金融 非周期性行业有可选 消费 信息 医药 电信和公用 年均收益率最高的行业为医药 其次是金融和公用 收益率最低的行业是 可选 案例 M2 行业轮动策略 7 针对上述对周期性和非周期行业的划分 构建周期性行业和非周期性行业 的轮动策略 数据与轮动策略的建立数据与轮动策略的建立 1 信息的同步性 考虑到 M2 的披露时间及信息的传导时间 所有投资 时段都滞后了一个月的时间 2 组合的构建策略 在货币政策处于扩张时等权配置周期性行业 紧缩 时等权配置非周期性行业 策略配置策略配置 按照顺周期策略 即策略 1 构建投资组合并查看组合的收益及对应的逆 向投资 扩张时投资非周期性行业 紧缩时投资周期性行业 初始资金 1000 万 如图所示为周期性行业和非周期性行业按照顺周期策略进行轮动的资产损 益变动图 在每个周期开始时都重新调整等比例投资 等权分配所投资行业的 权重 后验结果后验结果 从 2007 年 6 月至 2011 年 12 月的策略收益来看 不考虑交易成本 顺周 期行业轮动策略获得最高的累积收益 19 65 远胜于行业平均 40 50 和逆周期策略 59 13 逆周期策略表现最差 此期间业绩基准为沪深 300 指数的收益为 37 57 顺周期的行业轮动策 略则战胜沪深 300 指数达到 17 92 年化超额收益超过 3 6 即便扣除 2 的 单次换仓成本 行业轮动策略同样远远战胜同期沪深 300 指数和行业平均投资 策略的表现 该策略具有如下优点 理念容易理解 且符合自上而下的投资理念 适合 机构投资者进行行业配置 将行业划分为周期性和非周期性进行投资 这种分 类标准与 实际投资中对行业属性的认识也非常接近 减少了对行业基本面和公 司信息的依赖 在紧缩时由于选择投资于非周期性行业能够避免较大的不确定 性 使得整个组合 的风险大大降低 抗风险能力得到增强 依据货币供应增速 M2 进行轮动 使得策略具有较强的可操作性 行业轮动的基本规律 1b62 html 4 4 资金流模型资金流模型 在市场中 经常存在交易性机会 其中一个就是资金流模型 该模型使用资 金流流向来判断股票在未来一段时间的涨跌情况 如果是资金流入的股票 则 8 股价在未来一段时间将可能会上涨 如果是资金流出的股票 则股价在未来一 段时间会可能下跌 那么 根据资金流向就可以构建相应的投资策略 基本概念基本概念 资金流是一种反映股票供求关系的指标 传统的量价无法区分市场微观结 构中的流动性和私有信息对股价的影响 而根据委托测算的资金流 能够有效 地观察微观市场交易者的真实意图及对股价造成的影响 资金流定义如下 证券价格在约定的时间段中处于上升状态时产生的成交 额是推动指数上涨的力量 这部分成交额被定义为资金流入 证券价格在约定 的时间段 中下跌时的成交额是推动指数下跌的力量 这部分成交额被定义为资 金流出 若证券价格在约定的时间段前后没有发生变化 则这段时间中的成交 额不计入资流量 策略模型策略模型 1 逆向选择理论 在非强势有效的 A 股市场 普遍存在信息不对称的问题 机构投资者与散 户投资者在对同一信息的评估能力上存在差异 在大部分情况下 散户投资者 缺乏专业 的投资能力和精力 那么根据 搭便车 理论 希望借助机构投资者 对股价的判断进行投资 一旦机构投资者率先对潜在市场信息做出反应 羊群 效应的散户投资者 则追涨杀跌 往往导致在很多情况下市场对潜在信息反应过 度 这样根据逆向选择理论 能够准确评估信息价值的投资者便会对反应过度 的股价做出交易 买入低估 的 卖出高估的股票 从而纠正这种信息反应过度 行为 根据市场对潜在信息反应过度的结论及市场投资者的行为特征 可以采取逆 向选择模型理论来构建选股模型 即卖出前期资金流入 价格上涨的股票 买 入前期资金流出 价格下跌的股票 按照这个思路 对一些指标参数进行回测 分析 可以得到稳定的选股模型 2 策略模型 根据资金流各种指标的特点 在选股模型中采用比较简单的方法 即以指 标排序打分的方式来筛选股票 首先通过对各个资金流指标进行排序打分 然 后将股票对各个指标的得分进行求和 最后以总得分值大小来筛选股票 具体 步骤如下 1 确定待选股票池 在选择组合构建时 剔除上市不满一个月的股票 剔除调仓期涨跌停及停牌的股票 防止因涨 跌停无法交易 剔除信息含量小于 10 的股票 因为这部分股票信号不明显 无法取得有效信息 2 构建股票组合 指标打分 首先将待选股票池中的股票按照资金流指标进行排序 然后 采用百分制整数打分法进行指标打分 即以股票在各个指标中所处位置的百分 数作为股票对于该指标的得分 前 1 得分为 1 依次递减 最后 1 得分为 100 求和排序 将股票相对于各个指标的得分进行求和 将和值从小到大排 9 序 进行分组比较 另外 选择排名靠前的 N 只股票构建组合 股票权重 采用等量权重 3 组合定期调整 调整时间从 1 到 3 个月不等 持有到期后 利用更新 后的指标数据重新确定待选股票池 重复步骤 2 打分求和过程 并将股票按 照指标得分从小到达排序 将原来分组中跌出组合的股票剔除 调进新的股票 同时将新组合内样本股的权重调整到相等 4 统计检验 分别计算各组合的收益率情况 考察组合的效果 本案例的结果来自于 D Alpha 量化对冲交易系统的后验平台 模拟交易所 主要数据情况如下 1 后验开始时间 2007 2 1 后验结束时间 2011 2 18 2 股票池范围 沪深 300 成分股 全市场 3 资金规模 现货 1 亿 3 亿 10 亿 期货 现货 1 1 4 撮合规则 高频数据撮合 与交易所类似 5 5 动量反转模型动量反转模型 A 股市场存在显著的动量及反转效应 按照形成期为 6 个月持有期为 9 个月的 动量策略以及形成期为 2 个月持有期为 1 个月的反转策略构建的投资组合表现 最佳 从不同的市场阶段看 动量策略在熊市阶段表现优异 而反转策略则在 牛市阶段可以取得出色的业绩 动量及反转效应 动量及反转效应 动量效应是指在一定时期内 如果某股票或者某股票组合在前一段时期表 现较好 那么 下一段时期该股票或者股票投资组合仍将有良好表现 而反转 效应则是指在一定时期内表现较差的股票在接下来的一段时期内有回复均值的 需要 所以表现会较好 动量效应测试结果 动量效应测试结果 从超额收益来看 形成期为 4 9 个月 持有期为 6 10 个月的动量组合 可以取得较高的超额收益 从战胜基准的频率来看 形成期为 6 8 个月间 持有期为 9 10 个月的动量组合战胜基准的频率较高 综合来看 形成期为 6 个月 持有期为 9 个月的动量组合在整个样本内表现最佳 反转效应测试结果 反转效应测试结果 10 从超额收益来看 形成期为 1 或 2 个月 持有期为 1 个月的反转组合可以 取得较高的超额收益 从战胜基准的频率来看 短期组合 也即形成期 和持有 期都为 1 或 2 个月的反转组合战胜基准的频率较高 综合前面两个因素 形成 期为 2 个月 持有期为 1 个月的反转组合在整个样本内表现最佳 动量策略表现 动量策略表现 买入前 6 个月累计收益率最高的一组股票 并持有 9 个月的动量策略构建 的投资组合在考虑单边 0 25 的交易成本以后 在长达 7 年多的测试期中取得 了 226 的累计收益 远高于同期 沪深 300 指数取得的 117 的累计收益 在 整个测试阶段 动量策略战胜基准的频率为 58 43 这一策略在熊市中表现 尤为出色 相对于沪深 300 平均每个月可以取得 1 2 左右的超额收益 信息 比率为 0 82 熊市阶段战胜基准的频率在 65 以上 反转策略表现 反转策略表现 买入前 2 个月内累计收益率最低的一组股票 并持有 1 个月的反转策略构 建的投资组合在考虑单边 0 25 的交易成本以后 在长达 7 年多的测试 期中取 得了 261 的累计收益 远高于同期沪深 300 指数取得的 117 的累计收益 在 整个测试阶段 动量策略战胜基准的频率为 51 69 这一策略在 牛市中表现 尤为出色 相对于沪深 300 平均每个月可以取得接近 1 5 的超额收益 信息 比率为 0 78 牛市阶段战胜基准的频率接近于 57 结论 结论 A 股市场存在显著的动量及反转效应 长期来看动量和反转策略相对于沪 深 300 都可以取得超额收益 但是动量反转策略在不同的市场阶段表现不同 动量 策略在熊市阶段表现优异 而反转策略则在牛市阶段可以取得出色的表现 因此在 A 股市场应用动量或者反转效应选择股票时 应根据市场环境在动量 和反转策略间 进行选择 牛市选择反转 熊市则选择动量 6 6 一致预期模型一致预期模型 超一致预期能够带来超额收益 如果年报披露净利润大幅超预期 则可以年报公 布之后买入持有获得超额收益 当然 如果在年报公布之前可以提前通过预测得 知大 幅超预期 则也可获得事件日前的正超额收益 但是少数年度的超预期带 来的超额收益并不明显 可能对某些利用此原理进行事件驱动选股策略的收益有 一定影响 11 预期基本面因子预期基本面因子 预期基本面因子主要分为预期估值因子和预期成长因子 预期估值因子中的预期市盈率因子是长期有效的 测试时间区间内 年胜率 100 月胜率 59 38 日胜率 52 92 但是波动较大 回撤较大 而且在近两年 采用该因子选股产生的超额收益远远小于前些年 通过对复合增长率和预期净利润同比两类预期成长类因子的研究 预期增长 的组别的选股表现明显好于预期减速的组别 而且对预期增长的组别进一步分 类 可以得到预期增速处于中等水平的股票在年报后表现更好更稳定的结论 预期情绪面因子预期情绪面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论