基于单片机的草坪智能喷灌系统设计与实现.doc_第1页
基于单片机的草坪智能喷灌系统设计与实现.doc_第2页
基于单片机的草坪智能喷灌系统设计与实现.doc_第3页
基于单片机的草坪智能喷灌系统设计与实现.doc_第4页
基于单片机的草坪智能喷灌系统设计与实现.doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科毕业论文(设计)开题报告姓 名:学 号:学 院:专 业:班 级:指导教师:开题日期:2013/10/24 摘 要本设计基于51单片机的草坪智能喷灌系统设计与实现,利用所学到的单片机系统开发的相关技术知识,完成智能喷灌控制系统的硬件搭建和程序设计。设计中确定系统功能实现数据采集及处理、检测及报警、多点控制。介绍了开发工具以及元器件的选择;设计中重点介绍了硬件电路实现以及软件算法的设计;并编写相关控制程序并进行调试;此次设计的是通过选择土壤温湿度传感器对土壤的湿度进行实时的采集,将采集到的信号以模拟量送给51单片机系统进行处理,通过用c语言的编程实现在需要时驱动相关外部设备,对目标区域进行自动精确地智能灌溉。并具有一定的LCD液晶显示和键盘操作功能。关键词:51单片机;智能喷灌;湿度传感器;c语言 目 录摘 要1一、绪论1(一)国内外现状及发展趋势1(二)设计的背景及意义2二、系统总体设计与分析4(一)方案论证41、控制芯片选择42、显示模块选择4(二)方案确立4三、系统硬件设计6(一)单片机系统介绍61、复位方式72、时钟电路83、单片机最小系统9(二) 1602液晶显示电路9(三) 键盘电路10(四)土壤湿度检测模块11(五)继电器执行模块12四、 系统软件设计14(一)系统整体框架介绍14(二) 键盘控制模式软件流程图15附录A 硬件电路图18附录B 程序源代码19一、绪论(一)国内外现状及发展趋势微灌技术的研究在中国的起步还不算太晚,自1974年引进墨西哥的滴灌设备我国的微灌技术试验研究正式开始。该过程经历了1974到1980年之间的引进消化和吸收,设备的研制与应用实验及试点阶段;1981到1986年之间经历了设备产品的改进和应用试验的研究以及扩大试点的推广三个阶段;从1987年到现在直接引用了国外先进的科学技术,进入了从高起点上对研发微灌设备的产品开发阶段。基于引入、吸收发达国家先进科学技术的基础上,结合了我国国情,从经济上的实用,便于安装和利于推广的主要几点出发,在个地相关关部门的合作与努力的情况下,开发微灌技术、生产研制设备和科学实验等多方面都取得重要的成果,我国的微灌技术日趋步入成熟。但是由于我国正处于初级阶段的微灌技术研究,近些年来自己研制、开发与生产微灌设备的产品不管是在质量方面和性能方面与发达国家相比较,差距存在还是比较大的;同发达的国家相比较更大的差距存在于微灌工程设备的组装配套和自动控制方面。例如灌溉设备系统成套性比较差,配套的水平偏低;主要的几个部件的品种规格太少,质量相对来说不稳定,没有很好的系列化;关键的设备稳定性和耐久性都比较差;自动化和综合功能技术程度不是很高,基本上还处于手动的操作方式,以至于整体的综合效果和收益都不高。随着现代化高科技不断的发展,各种智能化家电、数码产品走入进人们的日常生活,网络作为人们现代生活中人际的交往和获取知识的一个必不可少的平台。考虑到现代化高科技的发展,未来的智能浇灌系统也有希望朝一下这些方面发展。智能化随着传感器的技术、计算机处理技术和自动智能控制技术的持续发展,温室中的计算机环境的控制系统应用将会由以数据采集处理和监测的简单方式,渐渐转向以数据处理和应用为主。所以软件系统的研制和开发将会得到不断完善,其中专家系统为主的智能化管理控制系统已经取得了不少的研发成果,并且其应用的前景是非常广阔的。网络化目前,网络已经成为最具有活力,发展速度最快的高科技领域。网络的通信技术发展促进了信息的传播。设施的产业化程度的提高成为可能。综合环境的调控所谓综合环境调控,就是以实现目标植物的正常生长为目标,把影响目标植物生长的多种环境参数(如光照、温度、湿度等)都保持在适宜目标植物生长的状态,并尽可能的使用最少的环境调节装置(采光、遮光、通风、保温、加湿等)。智能和无人操作将会是未来的各种行业的发展趋势,不仅能大量节省人们的宝贵时间还能更好的控制各种成分的细微比例做到人们自己动手所不能做到的效果。高移植性稍微修改一些系统的参数及设备即可应用于别的环境下,省时省力,节省大量资金及研发成本。在不久的将来,不仅能实现对办公室花卉的控制而且可以实现路边及所有公共场所花草树木的自动灌溉,而且可以加入远程控制,可视频控制,更大限度的节省人力物力,这将是世界浇灌系统的一个发展趋势。(二)设计的背景及意义水是生命之源,同样它也是国家经济发展的主要因素,人类生存必不可少的因素,水的重要性在国际上已经得到了共识,水资源开发和保护已经被各国家所重视。而需要如何高效率利用有限的淡水资源,尽最大能力发挥水资源的效益己经成为看一个全球性极其有待解决的重要课题。诸多的缺水国家当中,作为水资源极其短缺国家之一的中国。水资源的利用率和利用效率低下使水资源在节流方面呈现巨大的挖掘潜力,因此节水成为历史发展的必然。伴随着人们快节奏的生活、工作、学习,人们已没有很多时间去精心照顾自己种的花卉植物等,因此市场上急需一种可以代替人类劳动的产品。由于现在市场上很多的喷灌设备主要是是针对温室、露天农作物、森林等大面积植物喷灌,而对于家庭小面积喷灌系统设备几乎没有,也没有达到自动化的水平。现代生活中,随着人们生活水平的提高,人们对花卉、树木等绿色植物的喜爱和种植越来越多,然而以前对花木的浇灌、施肥等工作都需要靠人工来实现,由于现代生活节奏的加快,人们往往忙于工作而忘记定期、及时地为花卉补充水分及养料,或者由于放假回家而将花放在办公室没有人管理导致花木枯死。已有的浇水器需要有人控制或者定时的浇灌,不能根据植物正常生长所需要的光照、水分、温度来实时调节植物生长环境的参数,不利于花木的成长,而且现在的名贵花如果因为以上原因而死亡得不偿失,鉴于以上情况,市场上急需提供一种能够根据光照、温度、湿度及光照的变化自动将水分和及光补充给花木,达到定期、及时浇灌花木的花木自动浇灌器。在全球淡水水资源越来越缺乏和农业现代化的当今世界,农业高度集约化种植模式(耕作、种植、灌溉、施肥、收获等)和“工厂化”特征日趋显著。在精确化农业的生产过程中,如今发达国家发展现代农业的主要的手段是运用高科学技术和高新技术的装备。在灌溉的技术上对农作物的生长过程智能化的控制要求正在提高。大多数发达国家农业的灌溉系统几乎全部采用计算机的控制方式,基本上实现了系统智能化。微灌技术和设备在我国还处于研究和待开发阶段,系统的成套性还较差,主要部件品种少,质量不稳定。因此,加速开发成套、适用、可靠、先进的灌溉系统是我国今后节水灌溉设备发展的主要方向。自动控制灌溉系统,基本上还是手动阀门来操作。自动控制器等方面还有待于进一步开发和应用。微机和单片机等自动控制检测系统装置,已经在某些微灌工程中应用和实验,初步显示出微灌采用自动化的管理系统优越性和先进性。二、系统总体设计与分析 (一)方案论证1、控制芯片选择方案一:采用飞思卡尔半导体公司的十六位单片机mc9s12xs128单片机,此款单片机共有80引脚绝大部分为I/O口,最高主频可达到96MHZ,运行速度快,但由于本系统的资源需求不是很大,而且此款单片机的照价较高,外围电路较复杂,故没有选择此款单片机。方案二:采用传统的8位机51单片机此款单片机应用方便外围电路简单,从设计任务看此款单片机足可胜任,最终从经济、性能等方面本系统选择了51单片机作为主控芯片;2、显示模块选择方案一:采用液晶1602作为显示模块,1602液晶每行可显示16个字符一共可以显示两行,可以显示数字和字符但是不能显示汉字,由于系统中采集的信息有可能是汉字的所以没有选择1602液晶。方案二:采用液晶12864,,12864液晶显示可以显示汉字,带有字库显示方便技术成熟,对于系统而言满足系统要求。可以显示较多的信息,清晰明了。本系统中需要显示信息较少顾系统选择了1602作为显示单元的显示器经济实惠方便。(二)方案确立当将单片机用作测控系统的时侯,系统必须有被测的信号通过指定输入通道,再由单片机来收集需要的输入信息。相对于测量的系统来说,它的核心任务是如何准确获得被测信号;但是对于测控系统来说,除了被测试控对象状态的信号,还应该把测试的数据和控制的条件对比并在需要的时候控制相应执行设备。传感器作为实现测量和控制的第一环节,是测量控制系统关键的部件,假如没有传感器对被测信号进行可靠的捕捉和数据的转换,所有的测量和控制都将会没有办法去实现。本系统硬件包括:温湿度采集转换模块、单片机及附属电路、键盘控制、LCD显示、时钟模块、继电器电路等部分的设计。系统整体电路框图如图2.1所示。单片机电源湿度检测液晶显示键盘输入管道阀 1管道阀 2备用管道阀图2.1系统框图三、系统硬件设计(一)单片机系统介绍本设计中要求单片机的频率必须要快,要不然将会明显的看出刷屏现象。所以经过对比试验确定选用STC公司的STC12C5A60S2系列单片机这款单片机是单时钟/机器周期(1T)的单片机, 具有高速、低功耗、超强抗干扰等特点是新一代8051单片机,指令代码完全兼容传统8051,但速度比普通的单片机快8-12 倍。内部集成MAX810专用复位电路,拥有2路PWM,8路高速10位的A/D转换(频率250K/S),适合对电机控制,抗干扰场合。单片机的实物图如图3.1所示:图3.1单片机实物图STC12C5A60S2基本的特性介绍如下:1. 内部集成增强型 8051 CPU,1T,单时钟、机器周期,指令代码完全与8051兼容2. 工作电压:STC12C5A60S2系列工作电压: 5.5V - 3.5V(5V单片机) STC12LE5A60S2 系列工作电压:3.6V-2.2V(3V单片机)3. 工作频率范围:035MHz,相当于普通8051的 0420MHz4. 用户应用程序空间 8K /16K / 20K / 32K / 40K / 48K / 52K / 60K / 62K 字节.5. 片上集成1280字节 RAM6. 通用I/O口(36/40/44个),复位后为:准双向口/弱上拉(普通8051I/O口) 可设置成四种模式:准双向口/弱上拉,推挽/上拉,仅为输入/高阻,开漏 每个I/O口驱动能力均可达到20mA,但整个芯片最大不要超过120mA7. ISP(在系统可编程)/ IAP(在应用可编程),无需专用编程器,无需专用仿真器 可通过串口(P3.0/P3.1)直接下载用户程序,数即可完成一片8. 有EEPROM功能(STC12C5A62S2/AD/PWM无内部EEPROM)9. 看门狗10.内部集成MAX810专用复位电路(外部晶体12M以下时,复位脚可直接1K电阻到地)11. 外部掉电检测电路: 在P4.6口有一个低压门槛比较器5V单片机为1.33V,误差为5%,3.3V 单片机为1.31V,误差为3%12. 时钟源:外部高精度晶体/时钟,内部R/C振荡器(温漂为5% 到10% 以内) 用户在下载用户程序时,可选择是使用内部R/C 振荡器还是外部晶体/ 时钟 常温下内部R/C振荡器频率为:5.0V 单片机为: 11MHz 17MHz;3.3V 单片机为: 8MHz12MHz精度要求不高时,可选择使用内部时钟,但因为有制造误差和温漂,以实际测试为准13. 共4个16位定时器 两个与传统8051兼容的定时器/计数器,16位定时器T0和T1,没有定时器2,但有独立 波特率发生器做串行通讯的波特率发生器,再上2路PCA模块可再实现2个16位定时器14. 3个时钟输出口,可由T0的溢出在P3.4/T0输出时钟,可由T1的溢出在P3.5/T1输出时钟,独 立波特率发生器可以在P1.0口输出时钟15. 外部中断I/O口7路,传统的下降沿中断或低电平触发中断,并新增支持上升沿中断的PCA模块,Power Down模式可由外部中断唤醒,INT0/P3.2,INT1/P3.3,T0/P3.4, T1/P3.5, RxD/P3.0, CCP0/P1.3, CCP1/P1.416. PWM(2路)/ PCA(可编程计数器阵列,2路)- 也可用来当2路D/A使用- 也可用来再实现2个定时器- 也可用来再实现2个外部中断(上升沿中断/下降沿中断均可分别或同时支持)17. A/D转换, 10位精度ADC,共8路,转换速度可达250K/S(每秒钟250次)18. 通用全双工异步串行口(UART),由于STC12系列是高速的8051,可再用定时器或PCA软件实现多串口19. STC12C5A60S2系列有双串口,后缀有S2标志的才有双串口,RxD2/P1.2(可通过寄存器设置到P4.2),TxD2/P1.3(可通过寄存器设置到P4.3)20. 工作温度范围:-40 +85(工业级) / 0 75(商业级)21. 封装:LQFP-48, LQFP-44, PDIP-40, PLCC-44, QFN-40I/O口不够时,可用2到3根普通I/O口线外接74HC164/165/595(均可级联)来扩展I/O口,还可用A/D做按键扫描来节省I/O口,或用双CPU,三线通信,还多了串口。1、复位方式在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的,单片机复位方式主要由按键复位和上电复位两种,本次设计主要是按键复位,在单片机复位输入端RST上加入高电平两个时钟周期时。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端,两个时钟周期后单片机就将复位。本次设计的复位电路如图3.1所示:图3.1复位电路图2、时钟电路单片机的运行需要时钟电路的支持,如果没有时钟电路的驱动单片机将无法按照“拍”来工作,所以需要通过时钟电路来给单片机提供脉冲信号,晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联. 在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十 M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定。本次设计始终电路如图3.2所示:图3.2时钟电路图3、单片机最小系统本次设计的STC125A60S2单片机最小系统由单片机芯片,复位电路及时钟电路组成,本次设计最小系统的电路图如图3.3所示:图3.3单片机最小系统电路图(二) 1602液晶显示电路本次采用液晶显示屏为1602型液晶显示屏,该屏属于字符型屏幕,是一种专门用于显示字母、数字、符号等点阵式LCD,目前常用16*1,16*2,20*2和40*2行等的模块,1602LCD分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别相较于数码管显示,屏幕使用更为简单,且可以定义字符,数码管电路复杂,增加不必要的隐患。1602液晶显示屏电路如图3.4所示图3.4 1602液晶显示屏电路图(三) 键盘电路在单片机系统中,按接口形式把键盘分为两大类:编码式键盘与非编码式键盘。由硬件逻辑电路来编码式键盘完成键识别的工作和可靠措施。每一按键,键盘会自动的提供出该按键读数,于此同时用产生的选通脉冲来通知给微处理器。这种键盘比较容易使用,但是硬件结构复杂,主机任务会相对繁重。而非编码式键盘主要包括有独立按键结构的键盘与有矩阵按键结构的键盘两种。矩阵结构键盘适合用在按键数量偏多的场合,由行线与列线来组成,按键在行列交叉点的位置上,节省I/O口。独立按键结构就是各按键相互独立,每个按键单独占用一根I/O口线,每根I/O口线按键的工作状态是不会影响其他I/O口线按键的工作状态。因此,用输入电平状态的检测可以很容易确定是哪个按键按下。此键盘是用于按键较少或操作速度较高的场合。由于本次设计只用到6个键,所以采用独立式键盘,按键主要对模式和设定值进行更改。键盘电路是由若干按键组成的,它是单片机系统中最常用的输入设备,用户能通过键盘向计算机输入指令、地址和数据。一般单片机系统中采和非编码键盘,非编码键盘是由软件来识别盘上的闭合键,它具有结构简单,使用灵活等特点,因此被广泛应用于单片机系统。本次设计采用通用方式,即按键采用共地并联方式,当按下按键时,输入单片机低电平信号,当待机时,输入单片机高电平,按键电路图如图3.5所示 图3.5 按键电路图(四)土壤湿度检测模块湿度检测采用FC-28土壤湿度传感器模块,湿度的不同导致电阻阻值发生改变,利用电阻分压不同经过LM358运放后放大然后进入单片机A/D转换。原理图如图3.6所示:图3.6湿度检测(五)继电器执行模块在电控制系统中,虽然直接利用控制器引脚控制被控对象可以实现最基本的自动控制,但对于稍复杂的情况就无能为力。在极大多数的电控制系统中,需要根据系统的各种状态或参数进行判断和逻辑运算,然后根据逻辑运算结果去控制执行元件,实现自动控制的目的。这就需要能够对系统的各种状态或参数进行判断和逻辑运算的电器元件,这一类电器元件就称为继电器。 继电器实质上是一种传递信号的电器,它是一种根据特定形式的输入信号转变为其触点开合状态的电器元件。一般来说,继电器由承受机构、中间机构和执行机构三部分组成。承受机构反映继电器的输入量,并传递给中间机构,与预定的量(整定量)进行比较,当达到整定量时(过量或欠量),中间机构就使执行机构动作,其触点闭合或断开,从而实现某种控制目的。 继电器作为系统的各种状态或参量判断和逻辑运算的电器元件,主要起到信号转换和传递作用,其触点容量较小。所以,通常接在控制电路中用于反映控制信号。 继电器的种类很多,按它反映信号的种类可分为电流、电压、速度、压力、温度等;按动作原理分为电磁式、感应式、电动式和电子式;按动作时间分为瞬时动作和延时动作。电磁式继电器有直流和交流之分,它们的重要结构和工作原理与接触器基本相同,它们各自又可分为电流、电压、中间、时间继电器等,由于继电器的线圈需要100MA左右的电流,单片机无法直接提供,因此本次设计继电器控制电路中引用三极管从当 “开关”,用以保护单片机。在智能喷灌控制系统中,采集到的参数在进行进行数据处理、数字滤波,标度变换之后,与给出的标准参数上下限给定值进行比较,如果高于上限值(或低于下限值)则驱动相应的外部灌溉电路,对目标区域进行微喷灌。本设计采用了继电器电路来驱动相应的外部灌溉电路用来实施对植物的灌溉。考虑到继电器仿真效果不明显,设计采用指示灯电路代替该效果。通过AT89C51给出处理信号。当相对湿度值高于上限值(或低于下限值)时,由指示灯指示电路模拟外部灌溉电路的导通与断开。相应的继电器模块和替代的指示灯接口模块。继电器执行模块电路如图3.6所示:图3.6继电器执行模块电路图在智能喷灌控制系统中,采集到的参数在进行进行数据处理、数字滤波,标度变换之后,与给出的标准参数上下限给定值进行比较,如果高于上限值(或低于下限值)则驱动相应的外部灌溉电路,对目标区域进行微喷灌。本设计采用了继电器电路来驱动相应的外部灌溉电路用来实施对植物的灌溉。考虑到继电器仿真效果不明显,设计采用指示灯电路代替该效果。通过AT89C51给出处理信号。当相对湿度值高于上限值(或低于下限值)时,由指示灯指示电路模拟外部灌溉电路的导通与断开。相应的继电器模块和替代的指示灯接口模块。四、 系统软件设计本次设计软件系统主要包括:湿度采集转换模块、键盘控制模块、LCD显示模块、继电器驱动模块等。(一)系统整体框架介绍当单片机上电复位后,系统开始运行程序,时间日期和温度值(相对湿度值)会实时显示的液晶显示器上,按下相应的功能键可以对温度值显示与相对湿度值显示的转换和显示时间的调整。当按下温湿度调整功能键时,LCD显示器上会有相应显示。当按下时钟调整功能键时,可以调节当前的时间值。当采集到的相对湿度值高于上限值(或低于下限值)则由继电器驱动相应的外部灌溉电路,对目标区域进行微喷灌。上电初始化流程图(二) 键盘控制模式软件流程图模式一流程图模式二流程图(二)编程软件介绍KEIL C51标准C编译器为8051微控制器的软件开发提供了C语言环境,,本站特地制作了一个相对简单的教程。此软件能嵌入汇编语言保留了汇编代码高效,快速的特点。KEIL C51编译器的功能不断增强,使你可以更加贴近CPU本身,及其它的衍生产品,其效率已经达到了相当搞的程度。C51已被完全集成到uVision2的集成开发环境中,这个集成开发环境包含:编译器,汇编器,实时操作系统,项目管理器,调试器。uVision2 IDE可为它们提供单一而灵活的开发环境。Keil C51 软件是众多单片机应用开发的优秀软件之一,它集编辑,编译,仿真于一体,支持汇编,PLM 语言和 C 语言的程序设计,界面友好,易学易用。如图4.2为打开界面:图4.2 keil打开界面工程新建后保存即可在打开界面进行编程,如图4.3为编写程序时的界面图。图4.3 keil打开界面五、系统调试结论单片机技术在各个领域正得到越来越广泛的应用,尤其Mcs-51系列单片机,迅速占领了现代化工业的测控和自动化工程应用的主要市场,并取得了令人瞩目的成绩,展现出了广阔的应用前景。基于单片机的温湿度测量系统,采用STC单片机和温湿度传感器,实现了对环境温湿度的自动测量和报警,STC单片机因其指令系统丰富、小巧、低价、灵活易扩展等独特的优点,在所设计的温湿度测量系统中使整个系统的性价比得以大幅度的提高。将STC单片机成功应用于温湿度测控系统,所研发产品可靠性和扩充性较强,能广泛应用于粮库、物流仓储、档案馆、农业大棚等对温湿度要求较高的场所,具有较大的市场推广前景。附录A 硬件电路图附录B 程序源代码#include#include#include#include 1602.h#include delay.hsbit Guandao1=P32;sbit Guandao2=P33;sbit Beiyong=P34;sbit Baojing=P35;sbit S1= P14 ;sbit S2= P15 ;sbit S3= P16 ;sbit S4= P17 ;int Shidu_set=10,Time_set=0,Shidu,Time,L_time=0,LL_time=0,LLL_time=0;char Flag=0,Modle=1;char displaytemp18,displaytemp28;/定义显示区域临时存储数组unsigned char ad_average_result,tp;/*- 定时器初始化子程序-*/void Init_Timer0(void) TMOD |= 0x01; /使用模式1,16位定时器,使用|符号可以在使用多个定时器时不受影响 /TH0=0x00; /给定初值 /TL0=0x00; EA=1; /总中断打开 ET0=1; /定时器中断打开 TR0=1; /定时器开关打开/* AD转换程序*/void AD_initiate() /初始化函数 ES=0;TMOD=0x21; /定时计数器方式控制寄存器,自动重装,16位计数器.SCON=0x50; /串行控制寄存器,方便在串口助手那观察TH1=0xfa;TL1=0xfa;TR1=1;void ADC_Power_On() /AD转换电ADC_CONTR|=0x80;DelayMs(5);void get_ad_result() /取AD结果函数,它是十位AD转换,每十次平均,最后取低八位作为AD采样数据 unsigned int i,q=0;for(i=0;i10;i+) tp=0; ADC_RES=0; /高八位数据清零,STC12C5A60S2 AD数据寄存名与STC12C54系列不同 ADC_RESL=0; /低两位清零 ADC_CONTR|=0x08; /启动AD转换 while(!tp) /判断AD转换是否完成 tp=0x10; tp&=ADC_CONTR; ADC_CONTR&=0xe7; ad_average_result=ADC_RES; q=q+ad_average_result

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论