高中数学教学设计案例_第1页
高中数学教学设计案例_第2页
高中数学教学设计案例_第3页
高中数学教学设计案例_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高高中中数数学学教教学学设设计计案案例例 平平面面与与平平面面平平行行的的判判定定 吉林省双辽市第二中学 马丹 一一 教教学学内内容容分分析析 本节内容是 普通高中课程标准实验教科书 数学必修 2 人教 A 版 第二章 2 2 2 平面与平面平行的判定 在 学习了直线与平面的 平行的基础之上 继 续研究平面与平面之间的位置关系 平行 判定思想是由 直线与直线平行 转化 为 直线与平面平行 再转化为 两平面平行 这节课的重点是 平面与平面平行 的判定定理及 其应用 难点是结合问题的特点正确选择方法 准确地使用符号语言 进行推理论证 二二 学学情情分分析析 对普通高中的学生来说 几何的基础情况一般 空间立体感不强 但在解决 立体几何问题 需要有一定观察 分析 解决问题的能力 较强的空间立体感 这就使一部分学生选择了放弃 因此教师应恰当引导 提高学生学习主动性 对 以前知识加以复习 带领学生直接参与分析问题 解决 问题 感受学习的快乐 三三 设设计计思思想想 本节课采用探索与研究的方法进行讲授 在教学过程中 教师不断启发引 导 学生可以通过分析 讨论 揭示直线与平面平行的判定 教师提出 问题设计教 学情境 为学生提供讨论问题的机会 学生 可以自由的提出自己的分析结果 结合 多媒体教学和教学模型演示 使学生更加直观的观察立体图形 逐步培养学生发现问 题 分析问题 解决问题的 能力 提高学生的数学逻辑思维能力 4 教学目标教学目标 1 知识与技能 理解面面平行的判定定理 并能用它证明一些简单问题 能准确使用数学 符号语言表述判定定理 进一步培养学生分析 解决问题能力和空间想象能力 2 过程与方法 学生通过对图形的直观感知 探究归纳得出两个平面平行的判定定理 3 情感 态度与价值观 激发学生学习数学兴趣 培养学生观察 探究 发现的能力和空间想象能 力 逻辑思维能力 学生深入体会转化思想方法 5 5 教学过程设计教学过程设计 1 创设情景 引入课题 根据新课程的理念和本节课的教学要求 由上节课直线与平面的判定定理 引出了本节课的内容 自然流畅 结合现实生活的实例让学生理解到本节课学 习的内容 提问 1 直线与平面平行的定义 直线与平面平行的判定定理分别是什么 写出符号表示 2 观察长方体各个面之间是怎样的位置关系 3 大家观察一下教室 是否可以发现面面平行的例子 1 学生回顾上节内容回答 直线与平面平行的定义 一条直线和一个平面没有公共点 则直线与平面平 行 直线与平面平行的判定定理 如果平面外一条直线平行于平面内的一条直 线 那么该直线平行于此平面 符号表示 a ba b a 2 学生观察之后得到结论 长方体相邻的平面是相交 不相邻的平面 是平行即向对平面平行 3 教室的天花板与地面是平行的关系 二 探究新知 我们已经研究了直线与平面的平行判定定理 那么两个平面具有什么条件 才能平行呢 问题 判断下列命题是否正确 1 平面 内有一条直线与平面 平行 那么 2 如果平面 内有无数条直线与平面 平行 那么 3 如果平面 内有任意条直线与平面 平行 那么 4 如果平面 内有两条直线与平面 平行 那么 学生思考回答问题 生 1 回答 1 错误 生 2 回答 2 错误 AB C D A1 C1 B1 D1 生 3 回答 3 正确 生 4 回答 4 错误 平面与平面平行需一个平面内所有的直线与另一个平面平行 但对所有的 直线逐一检验无法实现 那么如何由一个平面内的有限条直线与另一个平面平 行 推出面面平行呢 由平面性质可知 两条平行线 两条相交直线都可以确 定一个平面 因此可以在一个平面选两条直线证明面面平行 学生思考并分析问题 由判断题已经知道在一个平面内两条平行直线分别 与另一个平面平行 这两个平面可以是平行也可以相交 讨论 当三角板 ABC 的两条边平行桌面时 三角板 ABC 所在的平面是否平 行桌面 学生用三角板进行演示 得到结论 当三角板 ABC 的两条边平行桌面时 三角板 ABC 所在的平面平行桌面 也就是说 一个平面内的必须是两条交直线 与另一个平面平行 两面才平行 借助长方体模型 由直线与平面平行的判定定理可知 这两条相交直线 都与平面平行 此时 平面 ABCD 平行平面 11C A 11D B ABCD 1111 DCBA 两个平面平行的判定定理 一个平面内的两条交直线与另一个平面平行 则这两个平面平行 转化 线面平行 面面平行 符号表示 b a pba b a 判断两平面平行的方法有二种 1 用定义 如果两个平面没有公共点 则称这两个平面平行 2 两平面平行判定定理 3 定理实践 BDC DABDCBAABCD2 1111111 平面 求证 平面 正方体例 B1 A B C D A1 D1 C1 BDC DAB DABBD DABAD DBDAD BDC BD BDC AD BDCBCBDCAD BC AD ABCD ABCDAB CD BAABBA AB BACDBA CD DCBA ABCD 111 1111 1111111 111 11 1111 11 11 1111 1111 11111111 1111 平面平面 平面 平面 平面同理 平面 平面 平面 为平行四边形 为正方体证明 四 知识巩固 P58 1 3 五 课堂小结 1 通过本节课的学习 你学会了哪些判定面面平行的方法 学生回答 1 用定义 2 两平面平行判定定理 2 面面平行的判定定理体现了什么思想 学生回答 线线平行 线面平行 面面平行 六 课后作业 习题 2 2 A 组 7 8 六 教学后记六 教学后记 在教学过程中 通过观察实物 模型演示 创设问题情境

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论