




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二章第十二章 电路定理电路定理 一 教学基本要求一 教学基本要求 1 了解周期函数分解为傅里叶级数的方法和信号频谱的概念 2 理解周期量的有效值 平均值的概念 掌握周期量有效值的计算方法 3 掌握非正弦周期电流电路的谐波分析法和平均功率的计算 了解滤波 器的概念 二 教学重点与难点二 教学重点与难点 教学重点 1 非正弦周期电流电路的电流 电压的有效值 平均值 2 非正弦周期电流电路的平均功率 3 非正弦周期电流电路的计算方法 叠加定理 戴维宁定理和诺顿定理 教学难点 1 叠加定理在非正弦周期电流电路中的应用 2 非正弦周期电流电路功率的计算 三 本章与其它章节的联系 三 本章与其它章节的联系 本章主要讨论非正弦周期电流 电压信号的作用下 线性电路的稳态分析 和计算方法 非正弦周期信号可以分解为直流量和一系列不同频率正弦量之和 每一信号单独作用下的响应 与直流电路及交流电路的求解方法相同 再应用 叠加定理求解 是前面内容的综合 四 学时安排四 学时安排 总学时 总学时 4 教 学 内 容学 时 1 非正弦周期信号及周期函数分解为傅立叶级数2 2 有效值 平均值和平均功率 非正弦周期电流电路的计算 2 五 教学内容五 教学内容 12 1 12 1 非正弦周期信号非正弦周期信号 生产实际中不完全是正弦电路 经常会遇到非正弦周期电流电路 在电子 技术 自动控制 计算机和无线电技术等方面 电压和电流往往都是周期性的 非正弦波形 非正弦周期交流信号的特点 1 不是正弦波 2 按周期规律变化 满足 k 0 1 2 式中 T 为周期 图 12 1 为一些典型的 非正弦周期信号 a 半波整流波形 b 锯齿波 c 方波 图 12 1 本章主要讨论非正弦周期电流 电压信号的作用下 线性电路的稳态分析 和计算方法 采用谐波分析法 实质上就是通过应用数学中傅里叶级数展开方 法 将非正弦周期信号分解为一系列不同频率的正弦量之和 再根据线性电路 的叠加定理 分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流 分量和电压分量 最后 把所得分量按时域形式叠加得到电路在 非正弦周期激 励下的稳态电流和电压 12 2 12 2 周期函数分解为付里叶级数周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流 电压信号多能满足展开成傅里叶级 数的条件 因而能分解成如下傅里叶级数形式 也可表示成 以上两种表示式中系数之间关系为 上述系数可按下列公式计算 k 1 2 3 求出 a0 ak bk 便可得到原函数 f t 的展开式 注意 非正弦周期电流 电压信号分解成傅里叶级数的关键在于求出系数 a0 ak bk 可以利用函数的某种对称性判断它包含哪些谐波分量及不包含哪 些谐波分量 可使系数的确定简化 给计算和分析将带来很大的方便 如以下 几种周期函数值得注意 1 偶函数 波形对称于纵轴 如图 12 2 所示 图 12 2 满足 2 奇函数 波形对称与原点如图 12 3 所示 图 12 3 满足 3 奇谐波函数 波形镜对称如图 12 4 所示 图 12 4 满足 4 若函数是偶函数又是镜对称时 则只含有奇次的余弦项 即 5 若函数是奇函数又是镜对称时 则只含有奇次的正弦相 即 实际中所遇到的周期函数可能较复杂 不易看出对称性 但是如果将波形 作一定的平移 或视为几个典型波形的合成 则也能使计算各次谐波的系数简 化 例 12 1 把图示周期性方波电流分解成傅里叶级数 例 12 1 图 解 周期性方波电流在一个周期内的函数表示式为 各次谐波分量的系数为 K 为奇数 因此 的傅里叶级数展开式为 即 周期性方波可以看成是直流分量与一次谐波 三次谐波 五次谐波等 的叠加 如下图所示 例 12 2 给定函数 f t 的部分波形如图所示 为使 f t 的傅里叶级数中只 包含如下的分量 1 正弦分量 2 余弦分量 3 正弦偶次分量 4 余 弦奇次分量 试画出 f t 的波形 例 12 2 图 解 1 f t 的傅里叶级数中只包含正弦分量 说明 f t 为奇函数 对原点 对称 可用下图波形表示 2 f t 的傅里叶级数中只包含余弦分量 说明 f t 为偶函数 对坐标纵 轴对称 可用下图波形表示 3 f t 的傅里叶级数中只包含正弦偶次分量 可用下图波形表示 4 f t 的傅里叶级数中只包含余弦奇次分量 可用下图波形表示 12 3 有效值 平均值和平均功率有效值 平均值和平均功率 1 三角函数的性质 1 正弦 余弦函数在一个周期内的积分为 0 即 2 sin2 cos2 在一个周期内的积分为 即 3 三角函数的正交性如下式所示 2 非正弦周期函数的有效值 设非正弦周期电流可以分解为傅里叶级数 代入有效值的定义式中有 利用上述三角函数的性质 上式中 i 的展开式平方后将含有下列各项 这样可以求得 i 的有效值为 由此得到结论 周期函数的有效值为直流分量及各次谐波分量有效值平方 和的方根 此结论可以推广用于其他非正弦周期量 3 非正弦周期函数的平均值 设非正弦周期电流可以分解为傅里叶级数 则其平均值定义为 即 非正弦周期电流的平均值等于此电流绝对值的平均值 按上式可求得 正弦电流的平均值为 注意 1 测量非正弦周期电流或电压的有效值要用电磁系或电动系仪表 测量 非 正弦周期量的平均值要用磁电系仪表 2 非正弦周期量的有效值和平均值没有固定的比例关系 它们随着波形 不同而不同 4 非正弦周期交流电路的平均功率 设任意一端口电路的非正弦周期电流和电压可以分解为傅里叶级数 则一端口的平均功率为 代入电压 电流表示式并利用三角函数的性质 得 式中 由此得出结论 非正弦周期电流电路的平均功率 直流分量的功率 各次谐波的平均功率 12 4 非正弦周期交流电路的计算非正弦周期交流电路的计算 根据以上讨论可得非正弦周期电流电路的计算步骤如下 1 把给定电源的非正弦周期电流或电压作傅里叶级数分解 将非正弦 周期量展开成若干频率的谐波信号 2 利用直流和正弦交流电路的计算方法 对直流和各次谐波激励分别 计算其响应 3 将以上计算结果转换为瞬时值迭加 注意注意 1 交流各次谐波电路计算可应用相量法 2 对不同的频率 感抗与容抗是不同的 对直流 C 相当于开路 L 相于短路 对 k 次谐波有 例 12 3 电路如图 a 所示 电流源为图 b 所示的 方波信号 求输出电压u0 已知 例 12 3 图 a b 解 计算步骤如下 1 由例 12 1 知方波信号的展开式为 代入已知数据 得直流分量 基波最大值 三次谐波最大值 五次谐波最大值 角频率为 因此 电流源各频率的谐波分量表示式为 2 对各次频率的谐波分量单独计算 a 直流分量 IS0 单独作用时 把电容断路 电感短路 电路如图 c 所示 计算得 c b 基波单独作用时 电路如图 a 所示 计算得容 抗和感抗为 所以阻抗为 因此 c 三次谐波单独作用时 计算得容抗和感抗为 阻抗为 则 d 五次谐波单独作用时 计算得容抗和感抗为 阻抗为 则 3 把各次谐波分量计算结果的瞬时值迭加 例 12 4 图 a 所示电路中各表读数 有效值 及电路吸收的功率 例 12 4 图 a 解 1 当直流分量 u0 30V 作用于电路时 L1 L2 短路 C1 C2 开路 电 路如图 b 所示 b 所以 2 基波作用于电路 u1 120cos1000tV L1 C1 对基波发生并联谐振 所以 基波电压加于 L1 C1 并 联电路两端 故 3 二次谐波 u2 60cos 2000t 4 V 作用于电路 有 L2 C2 对二次谐波发生并联谐振 所以 电压加于 L2 C2 并联电路两端 故 所以电流表 A1 1A A2 A3 电压表 V1 V2 例 12 5 图 a 所示电路中 已知电源 u t 是周期函数 波形如图 b 所 示 L 1 2 mH C 125 F 求 理想变压器原边电流i1 t 及输出电压u2 的有效值 例 12 5 图 a b 解 由图 b 知 当直流分量 u0 12V 作用于电路时 电容开路 电感短路 有 当 作用于电路时 有 图 a 的原边等效电路如图 c 所示 c 电容和电感发生并联谐振 电源电流为零 因此 则 例 12 6 求图示电路中 a b 两端电压有效值 Uab 电流 i 及功率表的读数 已知 例 12 6 图 解 电压有效值 一次谐波作用时 三次谐波作用时 所以 功率表读数为 注意 同频率的电压电流构成有功功率 例 12 7 已知图 a 电路中 L 0 1H C3 1 F 电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版住宅小区排水设施维护保养合同
- 2025版企业培训项目后期跟踪服务合同范本
- 2025房产转让合同范本:公租房转租管理服务协议
- 2025建筑材料采购合同范本大全
- 红酒定制知识培训班课件
- 2025合同范例:股权激励分配协议样本
- 红酒冷藏知识培训课件
- 2025健身房合同转让协议书范文
- 红菇知识培训总结
- 2025年合同管理流程优化指南
- 2025新疆天泽和达水务科技有限公司部分岗位社会招聘28人笔试参考题库附答案解析
- 2025云南昆明巫家坝建设发展有限责任公司招聘23人笔试备考试题及答案解析
- 消防工程清包合同范本
- AQ 1083-2011 煤矿建设安全规范 (正式版)
- 2022年北京语言大学各单位新编长聘人员招聘需求笔试备考题库及答案解析
- 部编版小学语文四年级上册课程纲要
- 完整解读中华人民共和国政府信息公开条例课件
- 幼儿园红色故事绘本:《闪闪的红星》 课件
- 小学特色作业经验汇报课件
- 统计业务知识(统计法规)课件
- 新湘科版科学五年级上册全册课件(精品PPT)
评论
0/150
提交评论