




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章第三章 圆圆 3 3 圆周角和圆心角的关系 二 圆周角和圆心角的关系 二 广东省江门市新会华侨中学广东省江门市新会华侨中学 李小玲李小玲 一 学生知识状况分析一 学生知识状况分析 学生的知识技能基础学生的知识技能基础 学生在上一节的内容中已掌握了圆心角的定义及圆 心角的性质 掌握了在同圆或等圆中 如果两个圆心角 两条弧 两条弦中有 一组量相等 那么它们所对应的其余各组量都分别相等 在上一课时中 了解 了同弧所对的圆周角和圆心角之间的关系 初步了解研究图形的方法 如折叠 轴对称 旋转 证明等 学生的活动经验基础学生的活动经验基础 在以前的数学学习中学生已经经历了很多合作学习 的过程 具有了一定的合作学习的经验 具备了一定的合作与交流的能力 二 教学任务分析二 教学任务分析 本节共分 2 个课时 这是第 2 课时 主要研究圆周角定理的几个推论 并 利用这些解决一些简单问题 具体地说 本节课的教学目标为 知识与技能知识与技能 1 掌握圆周角定理几个推论的内容 2 会熟练运用推论解决问题 过程与方法过程与方法 1 培养学生观察 分析及理解问题的能力 2 在学生自主探索推论的过程中 经历猜想 推理 验证等环节 获得正 确的学习方式 情感态度与价值观情感态度与价值观 培养学生的探索精神和解决问题的能力 教学重点 教学重点 圆周角定理的几个推论的应用 教学难点 教学难点 理解几个推论的 题设 和 结论 B B B A A A E E E C C C D D D O O O 三 教学过程分析三 教学过程分析 本节课分为五个教学环节 复习引入新课 新知学习 练习 课时小结 布置作业 第一环节第一环节 复习引入新课复习引入新课 活动内容 活动内容 一 复习 1 如图 BOC 是 角 BAC 是 角 若 BOC 80 BAC 第 1 题图 第 2 题图 A A A B B B C C C O O O A A A B B B C C C O O O 2 如图 点 A B C 都 在 O 上 若 ABO 65 则 BCA A 25 B 32 5 C 30 D 45 二 引入新课 观察图 ABC ADC 和 AEC 各是什么角 它们有什么共同的特 征 它们的大小有什么关系 为什么 解决上一课时中遗留的问题 如图 当他站在 B D E 的位置射球时对球门 AC 的张角的大小是相 等的 为什么呢 因为这三个角都对着 AC 弧 所以它们相等 第二环节第二环节 新知学习新知学习 活动内容活动内容 议一议 1 通过对上面问题的讨论 引导学生总结 在同圆或等圆中 同弧所对的 圆周角相等 提问 如果把上面的同弧改成等弧 结论成立吗 进一步得到 在同圆或等圆中 同弧或等弧所对的圆周角相等 问题 若将上面推论中的 同弧或等弧 改为 同弦或等弦 结论成立吗 请 同学们互相议一议 2 观察图 BC 是 O 的直径 它所对和圆周角是锐角 直角 还是钝 角 你是如何判断的 观察图 圆周角 BAC 90 弦 BC 经过圆心吗 为 什么 A A A B B B C C C O O O 图图图 B B B C C C A A A O O O 图图图 由以上我们可得到 直径所对的圆周角是直角 90 的圆周角所对的弦是 直径 活动目的 活动目的 通过互相交流讨论 总结规律 通过老师把问题进一步深化和变化 引导 学生得到正确的定理 实际教学效果实际教学效果 在教学时注意 1 同弧 指 同一个圆 2 等弧 指 在同圆或等圆中 3 同弧或等弧 不能改为 同弦或等弦 第三环节第三环节 练习练习 活动内容活动内容 一 例题讲解 1 小明想用直角尺检查某些工件是否恰好为半圆形 根据下图 你能判断 哪个是半圆形 为什么 2 如图 AB 是 O 的直径 BD 是 O 的弦 延长 BD 到 C 使 AC AB BD 与 CD 的大小有什么关系 为什么 分析 由于 AB 是 O 的直径 故连接 AD 由直径所对的圆周角是直角 可得 AD BC 又因为 ABC 中 AC AB 所以由等腰三角形的三线合一 可证得 BD CD 3 船在航行过程中 船长常常通过测定角度 来确定是否会遇到暗礁 如图 A B 表示灯塔 暗礁分布在经过 A B 两点的一个圆形区域内 C 表示一个危险临界点 ACB 就是 危险角 当船与两个灯塔的夹角大于 危险角 时 就有可 能触礁 1 当船与两个灯塔的夹角 大于 危险角 时 船位于 哪个区域 为什么 2 当船与两个灯塔的夹角 小于 危险角 时 船位于 哪个区域 为什么 活动目的活动目的 这个定理的学习是比较容易理解 这一推论应用非常广泛 一般地 如果 题目的已知条件中有直径时 往往作出直径上的圆周角 直角 如果需要直 角或证明垂直时 往往作出直径即可解决问题 为了进一步熟悉推论 安排三 A A A B B B C C C D D D O O O 个例子 例子 1 只要通过观察图形 学生就可以得到答案 完成这个例子还可以帮 助正确理解这个定理 例子 2 是一题推理论证题 由图形 AB 是 O 的直径可联系到所对的圆周 角是直角 故连接 AD 由等腰三角形的三线合一 可证得 BD CD 例子 3 这是一个有实际背景的问题 解决这一问题不仅要用到圆周角定理 的推论 而且还要应用分类假设的思想 由题意可知 危险角 ACB 实际上 就是圆周角 船 P 与两个灯塔的夹角为 P 有可能在 O 外 P 有可能在 O 内 当 C 时 船位于暗礁区域内 当 C 时 船位于暗礁 区域外 我们可采用反证法进行论证 实际教学效果实际教学效果 注意 用反证法证明命题的一般步骤 1 假设命题的结论不成立 2 从这个假设出发 经过推理论证得出矛盾 3 由矛盾判定假设不正确 从而肯定命题的结论正确 二 学生练习 1 为什么有些电影院的坐位排列 横排 呈圆弧形 说一说这种设计的合 理性 2 如图 哪个角与 BAC 相等 第 2 题图 第 3 题图 A A A B B B C C C D D D A A A B B B C C C O O O 3 如图 O 的直径 AB 10 cm C 为 O 上的一点 ABC 30 求 AC 的长 第四环节第四环节 课时小结课时小结 1 要理解好圆周角定理的推论 2 构造直径所对的圆周角是圆中的常用方法 3 要多观察图形 善于识别圆周角与圆心角 构造同弧所对的圆周角也是 常用方法之一 4 圆周角定理建立了圆心角与圆周角的关系 而同圆或等圆中圆心角 弧 弦之间又存在等量关系 因此 圆中的角 圆周角和圆心角 弦 弧等的相等 关系可以互相转化 但转化过程中要注意以圆心角 弧为桥梁 如由弦相等只 能得弧或圆心角相等 不能直接得圆周角等 第五环节第五环节 布置作业布置作业 课本第 108 页 习题 3 5 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 恋爱考试题及答案
- 坏账考试题及答案
- 电工培训考核试题及答案
- 2025年二手货车抵押融资合同
- 2025年通信线路接地系统施工合同样本
- 2025年度制造业实习生劳动合同范本
- 2025大师傅餐饮企业品牌推广合同
- 2025版桥梁工程劳务分包合同(含工期管理)
- 2025年度房屋抵押贷款利率调整合同范本
- 基于2025年燃气管道更新的社会稳定风险评估与风险管理策略分析报告
- (2025年标准)动火安全协议书
- 2026届广州市高三年级阶段训练(8月市调研摸底) 数学试卷(含答案解析)
- 动物防疫检疫试题(附答案)
- 沙石码头经营方案(3篇)
- 2025年粉笔辅警考试题库
- 2025个人房屋租赁合同范本下载
- 水声传感器技术研究与应用
- 能源环保管理办法
- caac理论考试题库及答案
- 电气安全基础知识安全培训
- 残疾人家庭无障碍改造投标方案(技术标)
评论
0/150
提交评论