




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IntroductiontoBoostedTrees TianqiChenOct 222014 Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary ElementsinSupervisedLearning Notations i thtrainingexampleModel howtomakepredictiongiven includelinear logisticregression canhavedifferentinterpretations Linearmodel ThepredictionscoredependingonthetaskLinearregression Logisticregression isthepredictedscoreispredictedtheprobability oftheinstancebeingpositiveOthers forexampleinrankingcanbetherankscoreParameters thethingsweneedtolearnfromdataLinearmodel Elementscontinued ObjectiveFunction Objectivefunctionthatiseverywhere Lossontrainingdata Squareloss Logisticloss Regularization howcomplicatedthemodelis L2norm L1norm lasso TrainingLossmeasureshowwellmodelfitontrainingdata Regularization measurescomplexityofmodel Puttingknownknowledgeintocontext Ridgeregression Linearmodel squareloss L2regularizationLasso Linearmodel squareloss L1regularizationLogisticregression Linearmodel logisticloss L2regularizationTheconceptualseparationbetweenmodel parameter objectivealsogivesyouengineeringbenefits ThinkofhowyoucanimplementSGDforbothridgeregressionandlogisticregression ObjectiveandBiasVarianceTrade off Whydowewanttocontaintwocomponentintheobjective OptimizingtraininglossencouragespredictivemodelsFittingwellintrainingdataatleastgetyouclosetotrainingdatawhichishopefullyclosetotheunderlyingdistributionOptimizingregularizationencouragessimplemodelsSimplermodelstendstohavesmallervarianceinfuturepredictions makingpredictionstable TrainingLossmeasureshowwellmodelfitontrainingdata Regularization measurescomplexityofmodel Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary RegressionTree CART regressiontree alsoknownasclassificationandregressiontree DecisionrulessameasindecisiontreeContainsonescoreineachleafvalue Input age gender occupation age 15 ismale 2 1 0 1 Y N Y N Doesthepersonlikecomputergames predictionscoreineachleaf RegressionTreeEnsemble age 15 ismale 2 1 0 1 Y N Y N Y N 0 9 0 9 tree1 tree2UseComputerDaily f 2 0 9 2 9f 1 0 9 1 9Predictionofissumofscorespredictedbyeachofthetree TreeEnsemblemethods Verywidelyused lookforGBM randomforest AlmosthalfofdataminingcompetitionarewonbyusingsomevariantsoftreeensemblemethodsInvarianttoscalingofinputs soyoudonotneedtodocarefulfeaturesnormalization Learnhigherorderinteractionbetweenfeatures Canbescalable andareusedinIndustry Putintocontext ModelandParameters Model assumingwehaveKtrees Think regressiontreeisafunctionthatmapstheattributestothescoreParametersIncludingstructureofeachtree andthescoreintheleafOrsimplyusefunctionasparameters Insteadlearningweightsin wearelearningfunctions trees SpaceoffunctionscontainingallRegressiontrees Learningatreeonsinglevariable Howcanwelearnfunctions Defineobjective loss regularization andoptimizeit Example Considerregressiontreeonsingleinputt time IwanttopredictwhetherIlikeromanticmusicattimet t 2011 03 01 Y N t 2010 03 20Y 0 2 Equivalently Themodelisregressiontreethatsplitsontime N1 2 1 0 Piecewisestepfunctionovertime Learningastepfunction Thingsweneedtolearn Objectiveforsinglevariableregressiontree stepfunctions TrainingLoss Howwillthefunctionfitonthepoints Regularization Howdowedefinecomplexityofthefunction Numberofsplittingpoints l2normoftheheightineachsegment SplittingPositionsTheHeightineachsegment Learningstepfunction visually Comingback ObjectiveforTreeEnsemble Model assumingwehaveKtreesObjective Possiblewaystodefine Numberofnodesinthetree depthL2normoftheleafweights detailedlater Trainingloss ComplexityoftheTrees ObjectivevsHeuristic Whenyoutalkabout decision trees itisusuallyheuristicsSplitbyinformationgainPrunethetreeMaximumdepthSmooththeleafvaluesMostheuristicsmapswelltoobjectives takingtheformal objective viewletusknowwhatwearelearningInformationgain traininglossPruning regularizationdefinedby nodesMaxdepth constraintonthefunctionspaceSmoothingleafvalues L2regularizationonleafweights RegressionTreeisnotjustforregression Regressiontreeensembledefineshowyoumakethepredictionscore itcanbeusedforClassification Regression Ranking Italldependsonhowyoudefinetheobjectivefunction Sofarwehavelearned UsingSquarelossWillresultsincommongradientboostedmachineUsingLogisticlossWillresultsinLogitBoost Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary TakeHomeMessageforthissection Bias variancetradeoffiseverywhereTheloss regularizationobjectivepatternappliesforregressiontreelearning functionlearning WewantpredictiveandsimplefunctionsThisdefineswhatwewanttolearn objective model Buthowdowelearnit Nextsection SoHowdoweLearn Objective WecannotusemethodssuchasSGD tofindf sincetheyaretrees insteadofjustnumericalvectors Solution AdditiveTraining Boosting Startfromconstantprediction addanewfunctioneachtime Modelattrainingroundt Newfunction Keepfunctionsaddedinpreviousround AdditiveTraining Considersquareloss Howdowedecidewhichftoadd Optimizetheobjective ThepredictionatroundtisThisiswhatweneedtodecideinroundt Goal find tominimizethis Thisisusuallycalledresidualfrompreviousround TaylorExpansionApproximationofLoss GoalSeemsstillcomplicatedexceptforthecaseofsquarelossTakeTaylorexpansionoftheobjectiveRecallDefine Ifyouarenotcomfortablewiththis thinkofsquarelossComparewhatwegettopreviousslide OurNewGoal Objective withconstantsremovedwhereWhyspendingsmucheffortstoderivetheobjective whynotjustgrowtrees Theoreticalbenefit knowwhatwearelearning convergenceEngineeringbenefit recalltheelementsofsupervisedlearningandcomesfromdefinitionoflossfunctionThelearningoffunctiononlydependontheobjectiveviaandThinkofhowyoucanseparatemodulesofyourcodewhenyouareaskedtoimplementboostedtreeforbothsquarelossandlogisticloss Refinethedefinitionoftree Wedefinetreebyavectorofscoresinleafs andaleafindexmappingfunctionthatmapsaninstancetoaleaf age 15 ismale Y N Y N Leaf1 Leaf2 Leaf3 q 1 q 3 w1 2 w2 0 1 w3 1 Thestructureofthetree Theleafweightofthetree DefineComplexityofaTree cont Definecomplexityas thisisnottheonlypossibledefinition Numberofleaves L2normofleafscores age 15 ismale Y N Y N Leaf1 Leaf2 Leaf3 w1 2 w2 0 1 w3 1 RevisittheObjectives DefinetheinstancesetinleafjasRegrouptheobjectivebyeachleaf ThisissumofTindependentquadraticfunctions TheStructureScore TwofactsaboutsinglevariablequadraticfunctionLetusdefine Assumethestructureoftree q x isfixed theoptimalweightineachleaf andtheresultingobjectivevalueare Thismeasureshowgoodatreestructureis TheStructureScoreCalculation age 15 ismale Y N Y N Instanceindex 1 2 3 4 5 g1 h1 g2 h2 g3 h3 g4 h4 g5 h5 gradientstatistics Thesmallerthescoreis thebetterthestructureis SearchingAlgorithmforSingleTree EnumeratethepossibletreestructuresqCalculatethestructurescorefortheq usingthescoringeq Findthebesttreestructure andusetheoptimalleafweight But therecanbeinfinitepossibletreestructures GreedyLearningoftheTree Inpractice wegrowthetreegreedilyStartfromtreewithdepth0Foreachleafnodeofthetree trytoaddasplit Thechangeof objectiveafteraddingthesplitis Remainingquestion howdowefindthebestsplit thescoreofleftchildthescoreofifwedonotsplitthescoreofrightchild Thecomplexitycostbyintroducingadditionalleaf EfficientFindingoftheBestSplit Allweneedissumofgandhineachside andcalculateLefttorightlinearscanoversortedinstanceisenoughtodecidethebestsplitalongthefeature g1 h1 g4 h4 g2 h2 g5 h5 g3 h3 Whatisthegainofasplitrule Sayisagea AnAlgorithmforSplitFinding Foreachnode enumerateoverallfeaturesForeachfeature sortedtheinstancesbyfeaturevalueUsealinearscantodecidethebestsplitalongthatfeatureTakethebestsplitsolutionalongallthefeaturesTimeComplexitygrowingatreeofdepthKItisO ndKlogn oreachlevel needO nlogn timetosortTherearedfeatures andweneedtodoitforKlevelThiscanbefurtheroptimized e g useapproximationorcachingthesortedfeatures Canscaletoverylargedataset WhataboutCategoricalVariables SometreelearningalgorithmhandlescategoricalvariableandcontinuousvariableseparatelyWecaneasilyusethescoringformulawederivedtoscoresplitbasedoncategoricalvariables Actuallyitisnotnecessarytohandlecategoricalseparately Wecanencodethecategoricalvariablesintonumericalvectorusingone hotencoding Allocatea categoricallengthvector Thevectorwillbesparseiftherearelotsofcategories thelearningalgorithmispreferredtohandlesparsedata PruningandRegularization Recallthegainofsplit itcanbenegative WhenthetraininglossreductionissmallerthanregularizationTrade offbetweensimplicityandpredictivnessPre stoppingStopsplitifthebestsplithavenegativegainButmaybeasplitcanbenefitfuturesplits Post PrunningGrowatreetomaximumdepth recursivelyprunealltheleafsplitswithnegativegain Recap BoostedTreeAlgorithm AddanewtreeineachiterationBeginningofeachiteration calculateUsethestatisticstogreedilygrowatreeAddtothemodelUsually insteadwedoiscalledstep sizeorshrinkage usuallysetaround0 1Thismeanswedonotdofulloptimizationineachstepandreservechanceforfuturerounds ithelpspreventoverfitting Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary Questionstocheckifyoureallygetit Howcanwebuildaboostedtreeclassifiertodoweightedregressionproblem suchthateachinstancehaveaimportanceweight Backtothetimeseriesproblem ifIwanttolearnstepfunctionsovertime Isthereotherwaystolearnthetimesplits otherthanthetopdownsplitapproach Questionstocheckifyoureallygetit Howcanwebuildaboostedtreeclassifiertodoweightedregressionproblem suchthateachinstancehaveaimportanceweight Defineobjective calculate feedittotheoldtreelearningalgorithmwehaveforun weightedversion Againthinkofseparationofmodelandobjective howdoesthetheorycanhelpbetterorganizingthemachinelearningtoolkit Questionstocheckifyoureallygetit Timeseriesproblem AllthatisimportantisthestructurescoreofthesplitsTop downgreedy sameastreesBottom upgreedy startfromindividualpointsaseachgroup greedilymergeneig
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆电讯职业学院《班级经营》2023-2024学年第二学期期末试卷
- 濮阳职业技术学院《食品质量管理学》2023-2024学年第二学期期末试卷
- 湖南财政经济学院《中医学基础(中基、中诊)》2023-2024学年第二学期期末试卷
- 广州理工学院《专业研讨》2023-2024学年第二学期期末试卷
- 大庆职业学院《商品学概论》2023-2024学年第二学期期末试卷
- 河北科技工程职业技术大学《高级统计分析方法(二)》2023-2024学年第二学期期末试卷
- 遂宁工程职业学院《国画工笔花鸟》2023-2024学年第二学期期末试卷
- 文山学院《专业英语(通信工程)》2023-2024学年第二学期期末试卷
- 大理护理职业学院《微观经济学A》2023-2024学年第二学期期末试卷
- 平顶山文化艺术职业学院《阿拉伯语会话》2023-2024学年第二学期期末试卷
- 《平行四边形的面积》说课课件
- 2025年九年级语文中考最后一练口语交际(全国版)(含解析)
- 一例高血压护理个案
- 延迟退休政策驱动中国第二次人口红利的多维度解析与展望
- 2025山东济南属国有企业招聘41人笔试参考题库附带答案详解析
- 2025年广东省深圳市龙岗区中考英语二模试卷
- 江苏扬州中学2024-2025学年数学高二下期末经典试题含解析
- 2024年注册会计师考试《会计》真题及答案解析
- 本科评估毕业5年学生的专业培养目标达成情况分析
- 创新网络中的溢出效应:生产网络中的扩散机制
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
评论
0/150
提交评论