陈天奇论文演讲ppt课件.ppt_第1页
陈天奇论文演讲ppt课件.ppt_第2页
陈天奇论文演讲ppt课件.ppt_第3页
陈天奇论文演讲ppt课件.ppt_第4页
陈天奇论文演讲ppt课件.ppt_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntroductiontoBoostedTrees TianqiChenOct 222014 Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary ElementsinSupervisedLearning Notations i thtrainingexampleModel howtomakepredictiongiven includelinear logisticregression canhavedifferentinterpretations Linearmodel ThepredictionscoredependingonthetaskLinearregression Logisticregression isthepredictedscoreispredictedtheprobability oftheinstancebeingpositiveOthers forexampleinrankingcanbetherankscoreParameters thethingsweneedtolearnfromdataLinearmodel Elementscontinued ObjectiveFunction Objectivefunctionthatiseverywhere Lossontrainingdata Squareloss Logisticloss Regularization howcomplicatedthemodelis L2norm L1norm lasso TrainingLossmeasureshowwellmodelfitontrainingdata Regularization measurescomplexityofmodel Puttingknownknowledgeintocontext Ridgeregression Linearmodel squareloss L2regularizationLasso Linearmodel squareloss L1regularizationLogisticregression Linearmodel logisticloss L2regularizationTheconceptualseparationbetweenmodel parameter objectivealsogivesyouengineeringbenefits ThinkofhowyoucanimplementSGDforbothridgeregressionandlogisticregression ObjectiveandBiasVarianceTrade off Whydowewanttocontaintwocomponentintheobjective OptimizingtraininglossencouragespredictivemodelsFittingwellintrainingdataatleastgetyouclosetotrainingdatawhichishopefullyclosetotheunderlyingdistributionOptimizingregularizationencouragessimplemodelsSimplermodelstendstohavesmallervarianceinfuturepredictions makingpredictionstable TrainingLossmeasureshowwellmodelfitontrainingdata Regularization measurescomplexityofmodel Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary RegressionTree CART regressiontree alsoknownasclassificationandregressiontree DecisionrulessameasindecisiontreeContainsonescoreineachleafvalue Input age gender occupation age 15 ismale 2 1 0 1 Y N Y N Doesthepersonlikecomputergames predictionscoreineachleaf RegressionTreeEnsemble age 15 ismale 2 1 0 1 Y N Y N Y N 0 9 0 9 tree1 tree2UseComputerDaily f 2 0 9 2 9f 1 0 9 1 9Predictionofissumofscorespredictedbyeachofthetree TreeEnsemblemethods Verywidelyused lookforGBM randomforest AlmosthalfofdataminingcompetitionarewonbyusingsomevariantsoftreeensemblemethodsInvarianttoscalingofinputs soyoudonotneedtodocarefulfeaturesnormalization Learnhigherorderinteractionbetweenfeatures Canbescalable andareusedinIndustry Putintocontext ModelandParameters Model assumingwehaveKtrees Think regressiontreeisafunctionthatmapstheattributestothescoreParametersIncludingstructureofeachtree andthescoreintheleafOrsimplyusefunctionasparameters Insteadlearningweightsin wearelearningfunctions trees SpaceoffunctionscontainingallRegressiontrees Learningatreeonsinglevariable Howcanwelearnfunctions Defineobjective loss regularization andoptimizeit Example Considerregressiontreeonsingleinputt time IwanttopredictwhetherIlikeromanticmusicattimet t 2011 03 01 Y N t 2010 03 20Y 0 2 Equivalently Themodelisregressiontreethatsplitsontime N1 2 1 0 Piecewisestepfunctionovertime Learningastepfunction Thingsweneedtolearn Objectiveforsinglevariableregressiontree stepfunctions TrainingLoss Howwillthefunctionfitonthepoints Regularization Howdowedefinecomplexityofthefunction Numberofsplittingpoints l2normoftheheightineachsegment SplittingPositionsTheHeightineachsegment Learningstepfunction visually Comingback ObjectiveforTreeEnsemble Model assumingwehaveKtreesObjective Possiblewaystodefine Numberofnodesinthetree depthL2normoftheleafweights detailedlater Trainingloss ComplexityoftheTrees ObjectivevsHeuristic Whenyoutalkabout decision trees itisusuallyheuristicsSplitbyinformationgainPrunethetreeMaximumdepthSmooththeleafvaluesMostheuristicsmapswelltoobjectives takingtheformal objective viewletusknowwhatwearelearningInformationgain traininglossPruning regularizationdefinedby nodesMaxdepth constraintonthefunctionspaceSmoothingleafvalues L2regularizationonleafweights RegressionTreeisnotjustforregression Regressiontreeensembledefineshowyoumakethepredictionscore itcanbeusedforClassification Regression Ranking Italldependsonhowyoudefinetheobjectivefunction Sofarwehavelearned UsingSquarelossWillresultsincommongradientboostedmachineUsingLogisticlossWillresultsinLogitBoost Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary TakeHomeMessageforthissection Bias variancetradeoffiseverywhereTheloss regularizationobjectivepatternappliesforregressiontreelearning functionlearning WewantpredictiveandsimplefunctionsThisdefineswhatwewanttolearn objective model Buthowdowelearnit Nextsection SoHowdoweLearn Objective WecannotusemethodssuchasSGD tofindf sincetheyaretrees insteadofjustnumericalvectors Solution AdditiveTraining Boosting Startfromconstantprediction addanewfunctioneachtime Modelattrainingroundt Newfunction Keepfunctionsaddedinpreviousround AdditiveTraining Considersquareloss Howdowedecidewhichftoadd Optimizetheobjective ThepredictionatroundtisThisiswhatweneedtodecideinroundt Goal find tominimizethis Thisisusuallycalledresidualfrompreviousround TaylorExpansionApproximationofLoss GoalSeemsstillcomplicatedexceptforthecaseofsquarelossTakeTaylorexpansionoftheobjectiveRecallDefine Ifyouarenotcomfortablewiththis thinkofsquarelossComparewhatwegettopreviousslide OurNewGoal Objective withconstantsremovedwhereWhyspendingsmucheffortstoderivetheobjective whynotjustgrowtrees Theoreticalbenefit knowwhatwearelearning convergenceEngineeringbenefit recalltheelementsofsupervisedlearningandcomesfromdefinitionoflossfunctionThelearningoffunctiononlydependontheobjectiveviaandThinkofhowyoucanseparatemodulesofyourcodewhenyouareaskedtoimplementboostedtreeforbothsquarelossandlogisticloss Refinethedefinitionoftree Wedefinetreebyavectorofscoresinleafs andaleafindexmappingfunctionthatmapsaninstancetoaleaf age 15 ismale Y N Y N Leaf1 Leaf2 Leaf3 q 1 q 3 w1 2 w2 0 1 w3 1 Thestructureofthetree Theleafweightofthetree DefineComplexityofaTree cont Definecomplexityas thisisnottheonlypossibledefinition Numberofleaves L2normofleafscores age 15 ismale Y N Y N Leaf1 Leaf2 Leaf3 w1 2 w2 0 1 w3 1 RevisittheObjectives DefinetheinstancesetinleafjasRegrouptheobjectivebyeachleaf ThisissumofTindependentquadraticfunctions TheStructureScore TwofactsaboutsinglevariablequadraticfunctionLetusdefine Assumethestructureoftree q x isfixed theoptimalweightineachleaf andtheresultingobjectivevalueare Thismeasureshowgoodatreestructureis TheStructureScoreCalculation age 15 ismale Y N Y N Instanceindex 1 2 3 4 5 g1 h1 g2 h2 g3 h3 g4 h4 g5 h5 gradientstatistics Thesmallerthescoreis thebetterthestructureis SearchingAlgorithmforSingleTree EnumeratethepossibletreestructuresqCalculatethestructurescorefortheq usingthescoringeq Findthebesttreestructure andusetheoptimalleafweight But therecanbeinfinitepossibletreestructures GreedyLearningoftheTree Inpractice wegrowthetreegreedilyStartfromtreewithdepth0Foreachleafnodeofthetree trytoaddasplit Thechangeof objectiveafteraddingthesplitis Remainingquestion howdowefindthebestsplit thescoreofleftchildthescoreofifwedonotsplitthescoreofrightchild Thecomplexitycostbyintroducingadditionalleaf EfficientFindingoftheBestSplit Allweneedissumofgandhineachside andcalculateLefttorightlinearscanoversortedinstanceisenoughtodecidethebestsplitalongthefeature g1 h1 g4 h4 g2 h2 g5 h5 g3 h3 Whatisthegainofasplitrule Sayisagea AnAlgorithmforSplitFinding Foreachnode enumerateoverallfeaturesForeachfeature sortedtheinstancesbyfeaturevalueUsealinearscantodecidethebestsplitalongthatfeatureTakethebestsplitsolutionalongallthefeaturesTimeComplexitygrowingatreeofdepthKItisO ndKlogn oreachlevel needO nlogn timetosortTherearedfeatures andweneedtodoitforKlevelThiscanbefurtheroptimized e g useapproximationorcachingthesortedfeatures Canscaletoverylargedataset WhataboutCategoricalVariables SometreelearningalgorithmhandlescategoricalvariableandcontinuousvariableseparatelyWecaneasilyusethescoringformulawederivedtoscoresplitbasedoncategoricalvariables Actuallyitisnotnecessarytohandlecategoricalseparately Wecanencodethecategoricalvariablesintonumericalvectorusingone hotencoding Allocatea categoricallengthvector Thevectorwillbesparseiftherearelotsofcategories thelearningalgorithmispreferredtohandlesparsedata PruningandRegularization Recallthegainofsplit itcanbenegative WhenthetraininglossreductionissmallerthanregularizationTrade offbetweensimplicityandpredictivnessPre stoppingStopsplitifthebestsplithavenegativegainButmaybeasplitcanbenefitfuturesplits Post PrunningGrowatreetomaximumdepth recursivelyprunealltheleafsplitswithnegativegain Recap BoostedTreeAlgorithm AddanewtreeineachiterationBeginningofeachiteration calculateUsethestatisticstogreedilygrowatreeAddtothemodelUsually insteadwedoiscalledstep sizeorshrinkage usuallysetaround0 1Thismeanswedonotdofulloptimizationineachstepandreservechanceforfuturerounds ithelpspreventoverfitting Outline ReviewofkeyconceptsofsupervisedlearningRegressionTreeandEnsemble WhatareweLearning GradientBoosting HowdoweLearn Summary Questionstocheckifyoureallygetit Howcanwebuildaboostedtreeclassifiertodoweightedregressionproblem suchthateachinstancehaveaimportanceweight Backtothetimeseriesproblem ifIwanttolearnstepfunctionsovertime Isthereotherwaystolearnthetimesplits otherthanthetopdownsplitapproach Questionstocheckifyoureallygetit Howcanwebuildaboostedtreeclassifiertodoweightedregressionproblem suchthateachinstancehaveaimportanceweight Defineobjective calculate feedittotheoldtreelearningalgorithmwehaveforun weightedversion Againthinkofseparationofmodelandobjective howdoesthetheorycanhelpbetterorganizingthemachinelearningtoolkit Questionstocheckifyoureallygetit Timeseriesproblem AllthatisimportantisthestructurescoreofthesplitsTop downgreedy sameastreesBottom upgreedy startfromindividualpointsaseachgroup greedilymergeneig

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论